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1. Introduction

An important class of problems arising in operations research are the
so–called optimal switching problems, in which the objective is to find the
optimal time to initiate/terminate a production process or enter/exit a mar-
ket. Such problems find numerous applications in production management
and capacity choice (see, e.g. Dixit, 1989; Trigeorgis, 1993; Pindyck, 1988;
McDonald and Siegel, 1985), but also in fields such as natural resource
economics (see, e.g. Brennan and Schwartz, 1985; Paddock et al., 1988),
maritime economics, etc. (Sødal et al., 2008; Kavussanos and Tsekrekos,
2011)

In an important paper, which has generated a lot of discussion, Brekke
and Øksendal (1994) have formulated a general optimal switching problem
under uncertainty as an impulse control problem (see also Bensoussan and
Lions, 1984, for a thorough examination of impulse control problems), and
have solved it using methods from stochastic analysis.

All aforementioned contributions consider optimal switching problems
where the uncertainty in the economic system is represented by one or
more stochastic processes with constant (or deterministically time–varying)
volatilities. However, the data do not always support this assumption and
there is evidence that, for instance, commodity prices display stochastic
volatility effects, which may develop on different time scales (see for example
the evidence and stylised facts in Hikspoor and Jaimungal, 2008; Eydeland
and Wolyniec, 2003)

Stochastic volatility models (see Taylor, 1994, for a review) have gained
much attention by academics and practitioners alike, in the valuation and
hedging of financial derivatives, not only as an alternative to the Black and
Scholes (1973) framework, but also as a powerful tool that can better model
and explain economic variables and systems. As Fouque et al. (2003a) point
out, one characteristic feature of volatility is that its mean–reversion rate
is quite “fast”, as compared to the time scale of evolution of other eco-
nomic state variables. This feature is referred to as fast mean–reverting
volatility, and there is significance empirical evidence of its presence in eq-
uity prices, exchange rates and commodity prices (see for example Alizadeh
et al., 2002; Fouque et al., 2003b; Hikspoor and Jaimungal, 2008). The
above observations have led Fouque, Papanicolaou, Sircar and co–workers
to study the dynamics of such “fast” volatility processes and their net ef-
fect on the prices of financial options, an endeavour that led to important
qualitative and quantitative findings. (see also the results in Zhu and Chen,
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2011a,b; Chen and Zhu, 2012; Souza and Zubelli, 2011).
To the best of our knowledge, and despite the fact that asset and com-

modity prices have been documented to exhibit fast mean–reverting volatil-
ity, the study of its effects on optimal switching problems related to eco-
nomic decision–making has been overlooked. Theory and intuition offer lit-
tle guidance, a priori, as to whether fast mean–reverting stochastic volatility
should lead to more or less frequent switches between the admissible modes
of a production process. It is the aim of this paper to examine optimal
switching decisions under multi–scale stochastic volatility.

Motivated by the important qualitative findings of Fouque et al. (2003a,b),
concerning the effects of fast mean–reverting volatility on the pricing and
hedging of financial derivatives, it is natural to raise the question of whether
the “fast” varying stochastic volatility features of e.g. commodity time se-
ries, may affect the solution of optimal switching problems, and this is the
main object of this paper.

Following the seminal work of Fouque et al. (2003a) on multi–scale
volatility and using the perturbation method as in Fouque et al. (2000),
we formulate and solve an infinite–horizon, optimal switching problem un-
der uncertainty, in the spirit of Duckworth and Zervos (2001), but driven
by a general class of stochastic volatility models that exhibit fast mean–
reversion. The perturbation method allows us to approximate the optimal
switching problem with a sequence of simplified valuation systems, each one
offering a “correction” of different order to the constant–volatility solution
that has been documented in the literature. These corrections, that are the
effect of fast stochastic volatility, are derived in closed–form, allowing one
to analytically approximate the solution of the general switching problem
under fast mean–reverting stochastic volatility up to the desired order. Our
analytic approach is important, as the full multi–scale optimal stopping
problem is difficult and tricky to handle by numerical methods, and thus
our analytic results offer useful benchmarks for the numerical analysis of
the full problem.

Our closed–form solution are of interest to decision–makers dealing with
processes or projects that can be switched from and to an idle/active mode,
contingent on the evolution of economic variables that are documented to
exhibit fast mean–reverting stochastic volatility, such as exchange rates and
energy and commodity prices. To this end, we apply our general results to a
number of benchmark, mean–reverting stochastic volatility models, and we
explicitly derive the “correction” terms due to multi–scale effects in a simple
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entry/exit problem. Assessing their effects on the qualitative features of the
solution, we find that when the uncertainty in an economic system exhibits
fast mean–reverting stochastic volatility: (a) optimal switching between
modes will be more frequent, (b) agents will be more willing to activate
earlier and will endure higher losses before deciding to optimally suspend
operations and (c) findings (a) and (b) are more pronounced for lower (more
negative) levels of correlation between price and volatility uncertainty, faster
volatility mean–reversion speeds and higher effective volatility levels.

The rest of the paper is organized as follows: Section 2 presents the
basic setting of our optimal switching problem under fast mean–reverting
stochastic volatility. In Section 3 we derive analytical approximations of
the optimal switching policy and value functions via homogenisation theory
arguments for the general switching problem. In Section 5 we apply our
results to a number of benchmark models related to decision–making and
stochastic volatility, and provide explicit expressions for the effects of multi–
scale stochastic volatility on optimal switching, and comment extensively
on the qualitative implications. Finally, Section 6 concludes the paper.

2. Basic setting

The problem we consider in this paper is that of finding the optimal
sequence of switching times (i.e. times of opening and closing) of a multi–
mode production process, given the costs of opening, closing and operating
in a certain mode and assuming that the economic state is governed by a
system of stochastic processes with stochastic volatility that exhibits fast
mean reversion.

In order to fix ideas, consider a production process or an investment
project that can produce a single commodity or product whose price (and
price change volatility) are varying as a system of stochastic processes (to
be specified below). The process/project can operate in two modes, say
open and closed (or active and idle). In the open/active mode, the project
yields a flow payoff that depends on the commodity/product price. In the
closed/idle mode, the project incurs a constant flow loss. Transition from
one mode to the other can take place instantaneously and an unlimited
number of times, but at constant fixed costs that are incurred each time.
The risk–free interest rate r is constant and the owner of the process/project
(e.g. a firm) is risk–neutral and a price–taker, in that its decisions do not
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affect the price and price volatility dynamics.1

In order to avoid confusion, in the remainder of the paper we will use
the terms production process, resource price, active mode and idle mode
instead of the equivalent terms investment project, product or commodity
price, open mode and closed mode.

Let (Ω,F , P ) be a complete probability space carrying the filtration
{Ft} = F satisfying the usual conditions of right continuity and augmen-
tation by P–negligible sets and carrying a standard two–dimensional F–
adapted Brownian motion {Wt}.

Assume that the resource price P is modeled by the following latent
factor stochastic volatility model (Fouque et al., 2003a)

dPt = µPtdt+ f (Yt)PtdW
P
t , P0 = p0 (1)

dYt = δ−2 (m− Yt) dt+
ν
√
2

δ
dW Y

t , Y0 = y0 (2)

where the Wiener process
[
W P

t W
Y
t

]′
is correlated to Wt by

[
W P

t

W Y
t

]

=

[
1 0

ρ
√

1− ρ2

]

Wt,

with |ρ| < 1 constant. In the above, the volatility of Pt is σt = f (Yt), driven
by a “fast” mean–reverting latent stochastic factor Yt, and f : I ⊂ R → R is
a smooth bounded function on the compact set I. In the above, δ is a small
positive number that governs the degree of mean reversion and corresponds
to the “fast” time scale of this process.

The decisions to switch from one mode of operation to the other can
be modeled by a stochastic process Q = {Qt} ∈ Q, where Q denotes the
family of all {Ft}–adapted, finite variation, càglàd processes Q with values
in {0, 1}, with Qt = 0 or 1 denoting whether the production process is idle
or active at time t. Let q0 denote the mode of the production process at
t = 0.

1The assumption of risk–neutrality is not crucial for the solution and it is made only
for simplicity. The extension to a risk–averse process/project owner is straightforward
and we make it available upon request from the authors. Equally non–crucial is the
assumption of instantaneous transition from one mode of operation to the other. Switches
between modes that take time to implement could be easily be accomodated, only at the
cost of extra notation.
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We can associate with each starting value triplet (q0, p0, y0) and sequence
of switching decisions Q, the (total, infinite horizon) present value function:

J(q0,p0,y0) (Q) = E

[∫ ∞

0

e−rs [R1 (Ps)Qs +R0 (Ps) (1−Qs)] ds

−
∑

s≥0

e−rs
[
K0 (∆Qs)

+ +K1 (∆Qs)
−]
]

(3)

which takes into account the switching costs, with ∆Qt = Qt+ − Qt and
(∆Qt)

± = max (±∆Qt, 0). Here, the sub–linear function Rq : R+ → R is
the payoff flow in mode q, and Kq, are the costs from switching from (i.e.
leaving) mode q, with q ∈ {0, 1}. Naturally, we require that K0+K1 > 0 so
that one cannot earn arbitrarily high profits simply by constantly changing
the production process’ operating mode back and forth. Possible choices
for Rq used in the literature are Rq(Pt) = (Pt− c)×1{q=1} (see Dixit, 1989)
or Rq(Pt) = h(Pt)× 1{q=1} −C × 1{q=0} (see Duckworth and Zervos, 2001),
with 1x the indicator function that takes the value of one if condition x

holds, and zero otherswise.
The objective is to maximise the functional J : Q → R, as provided by

equation (3) over all possible switching choices Q. Define the value function
V δ by

V δ
q (p, y) = sup

Q∈Q
J(q0,p0,y0) (Q) (4)

so that V δ
0 (p, y) (respectively V δ

1 (p, y)) denotes the maximum net present
value obtained when starting at (p0, y0) in the idle (active) state and fol-
lowing optimal switching policies. The superscript δ is used to emphasise
the dependence of the value function on the small parameter δ.

Using standard results on impulse control theory (see e.g. Duckworth
and Zervos, 2001; Bensoussan and Lions, 1984), we see that the value func-
tions V δ

q satisfy the following Hamilton–Bellman–Jacobi equation that takes
the form of the quasivariational inequality

max
{
LδV δ

q (p, y) +Rq (p) , V
δ
1−q (p, y)− V δ

q (p, y)−Kq

}
= 0, q = {0, 1} .

(5)
where the operator Lδ is the generator of the process (P, Y ), defined by

Lδ = δ−2L0 + δ−1L1 + L2
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with

L0 = (m− y)
∂

∂y
+ ν2

∂2

∂y2

L1 =
√
2νρf (y) p

∂2

∂p∂y

L2 =
1

2
f 2 (y) p2

∂2

∂p2
+ µp

∂

∂p
− rI,

where I is the identity operator.
The variational inequality in (5) is a free boundary value problem, the

solution of which defines two price levels, P δ
0 (y) > P δ

1 (y), that allow us
to specify the optimal switching times. In particular, for times t such that
Pt ≥ P δ

0 (y) the production process should be turned (or remain) active,
whereas for times t such that Pt ≤ P δ

1 (y) the production process should be
turned (or remain) idle. Thus, unlike the constant volatility case in Merton
(1973), where the price levels that “trigger” optimal switching are unknown
constants, here P δ

0 (y) , P
δ
1 (y) are unknown functions of the starting state

of the latent variable driving volatility that need to be specified as part
of the solution. In the remainder, it is helpful to remember that in our
notation, for q ∈ {0, 1}, Kq (respectively P δ

q (y)) is the cost to be incurred
(respectively the price process level that needs to be reached) for optimally
switching from mode q.

3. Optimal switching policy under fast mean–reverting stochastic

volatility

3.1. Notation

The solution of the problem described in the previous section depends
on the choice of the small parameter δ. Assuming analytic dependence of
V δ
q (p, y) and P

δ
q (y) on δ, by Taylor’s theorem these functions are determined

by the sequences V δ
q :=

{
V n
q

}
and P δ

q :=
{
P n
q

}
for n = 0, 1, 2, . . ., through

equations

V δ
q (p, y) =

∞∑

n=0

δnV n
q (p, y) , and P δ

q (y) =
∞∑

n=0

δnP n
q (y) . (6)

Observe that V n
q (p, y) =

∂n

∂δn
V δ
q (p, y)

∣
∣
δ=0

and P n
q (y) =

∂n

∂δn
P δ
q (y)

∣
∣
δ=0

, i.e. we
will reserve the use of the superscript n on a function to denote the action of
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the operator ∂n

∂δn
·
∣
∣
δ=0

on it, or equivalently on a sequence to denote the n–th
term of the sequence. In the proof of our main proposition, the following
simple re–labelling of the n + 1 term of the resource price sequence will
prove helpful

P
n

q = P n+1
q (y) . (7)

Moreover, we will use the notation ∗ for the convolution of two sequences,
i.e.

P ∗ Z = {(P ∗ Z)n}, where (P ∗ Z)n =
∑n

i=1 P
n−iZi,

and employ superscript (k) to denote the k–times convolution, i.e.

P (k) =

(

P ∗ · · · ∗ P
︸ ︷︷ ︸

k terms

)

, so that P (k),ℓ =

(

P ∗ · · · ∗ P
︸ ︷︷ ︸

k terms

)ℓ

is to be understood as the ℓ–th term of the sequence P (k).
Finally, it will prove notationally convenient to define the quantities

C (k, ℓ) = 1
ℓ!

∂ℓ

∂pℓ

[
V k
1−q (p, y)− V k

q (p, y)
]∣
∣
p=P 0

q (y)
, (x)+ = max (x, 0) ,

Lq = E
[∫∞

0
e−rsRq (ps) ds

]
, Iq =

{
0, if q = 0
∞, if q = 1

,

for q ∈ {0, 1}.

3.2. Asymptotic formulation of the optimal switching problem

The main result of the paper is summarised in the following proposition
that can be used in order to obtain approximate solutions to the variational
inequality in (5).

Proposition 1 Assuming the expansions in equation (6), the value func-
tions V n

q and the price thresholds P n
q , n ∈ {0, 1, 2, . . .} and q ∈ {0, 1},

satisfy the systems of equations

n∑

j=(n−2)+

Ln−jV
j
q (p, y) = −Rq (p)× 1{n−2=0} (8)
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1{n−2≥0} ×
∑

k,ℓ,m∈N:
k+ℓ+m=n−2

C (k, ℓ)P
(ℓ),m

q = Kq × 1{n−2=0} (9)

1{n−2≥0} ×
∑

k,ℓ,m∈N:
k+ℓ+m=n−2

(ℓ+ 1)C (k, ℓ+ 1)P
(ℓ),m

q = 0 (10)

1{n−2≥0} × lim
p→Iq

V n−2
q (p, y) = Lq × 1{n−2=0} for any y (11)

where 1{x} is the indicator function, taking the value of one if condition x

holds and zero otherwise, and P
(ℓ),m

q is the m–th term of the ℓ–times self–

convolution of P
m

q as the latter is defined by equation (7).

Proof of Proposition 1. The proof of the proposition is provided in
Appendix A.

Observe that equation (8) is a second–order differential equation con-
necting the unknown functions V j

q for j = n−2, n−1, n. Equations (9)–(11)
are boundary conditions that can be used to calculate the corrections to
the switching boundaries and are activated only for n ≥ 2, i.e. for orders
O(δ0) ≡ O(1) and above.

A significant benefit of the above proposition is that it can be used
sequentially, according to a step–by–step procedure outlined in the next
section, through which the value function and price threshold corrections
due to “fast” mean–reverting stochastic volatility can be worked out ana-
lytically.

4. Step–by–step procedure for analytic derivation of optimal so-

lution asymptotic terms

The procedure to sequentially determine
{
V n
q (p) , P n

q (y)
}
for n ∈ {0, 1, . . .},

q ∈ {0, 1} is as follows (where the explicit dependence on p and y is occa-
sionally suppressed for convenience):

Step 0

For n = 0 the system (8)–(11) reduces to the simple second–order dif-
ferential equation L0V

0
q (p, y) = 0. Since the operator L0 involves differen-

tiations with respect to the y variable only, it is easy to see that V 0
q is a
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function of p only. Note that the exact dependence of V 0
q on p will only be

completely specified at a later step (Step 2 ).

Step 1

For n = 1 the system (8)–(11) reduces to the second–order differential
equation L0V

1
q (p, y) = −L1V

0
q (p) which, having obtained V 0

q from the pre-
vious step, is treated as an equation for the unknown function V 1

q . Since
V 0
q is a function of p only, and L1 involves differentiations with respect to y,

the equation for V 1
q reduces to L0V

1
q (p, y) = 0, from which, using a similar

argument as in step 0 above, we deduce that V 1
q is a function of p only.

Again the dependence of on p will only be exactly specified at a later step
(Step 3 ). Furthermore note that the equation form for V 1

q is the exactly
the same as for V 0

q , but with a different right–hand side. This is a recurring
pattern for all subsequent steps.

Step 2

For n = 2, equation (8) becomes

L0V
2
q + L1V

1
q + L2V

0
q +Rq (p) = L0V

2
q + L2V

0
q +Rq (p) = 0. (12)

However, from this step onwards, the boundary conditions are activated, so
that equation (12) is complemented by

C(0, 0) = V 0
1−q

(
P 0
q

)
− V 0

q

(
P 0
q

)
= Kq (13)

C(0, 1) =
∂

∂p

[
V 0
1−q (p)− V 0

q (p)
]∣
∣
p=P 0

q

= 0 (14)

lim
p→Iq

V 0
q (p) = Lq (15)

This step will completely determine V 0
q and P 0

q , and will also determine V 2
q

up to a function of p. Given what is known from Steps 0 and 1, one can ob-
serve that equation (12) is a non–homogeneous linear equation of the form
L0V

2
q = F (p) for given F . This equation has non–trivial solutions for spe-

cific choices of F , which by the Fredholm alternative are specified by those F
that belong to the orthogonal complement of the null space of the adjoint op-
erator L0. This means that equation (12) has a solution if and only if F sat-
isfies the condition 〈F, ϕ〉 = 0, where ϕ is the solution of equation L∗

0ϕ = 0,
and L∗

0 is the adjoint operator of L0, defined by 〈L0z, w〉 = 〈z,L∗
0w〉, with

〈·, ·〉 the L2 inner product 〈g, h〉 =
∫ +∞
−∞ g (x)h (x) dx, where g and h are
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Lebesgue square–integrable functions. Note that ϕ is the density of the
invariant distribution of the latent process Yt, which easily verified to be

ϕ = 1√
2πν

e−
(m−y)2

2ν2 . If the solvability condition is satisfied, the solution of

(12) is of the form V 2
q = Φ0

q(p, y) +X0
q (p).

The solvability condition 〈F, ϕ〉 = 0 yields,

−〈L1V
1
q , ϕ〉 − 〈L2V

0
q , ϕ〉 −Rq = −〈L2V

0
q , ϕ〉 −Rq = 0 (16)

which reduces to

⌈L2V
0
q ⌉ ≡ ⌈L2⌉V 0

q =
1

2
f
2
p2
∂2V 0

q

∂p2
+ µp

∂V 0
q

∂p
− rV 0

q = −Rq (17)

where

f
2
= ⌈f 2 (y)⌉ =

∫ +∞

−∞
f 2 (y)ϕdy,

is the average value of f 2 (y) with respect to the invariant distribution of Yt.
Equation (17) is a second–order differential equation for V 0

q , the solution of
which provides the exact dependence of V 0

q on p that was unspecified in Step
0. It is interesting to note that equation (17) is the Black–Scholes–Merton

equation with a constant volatility, f
2
, the so–called effective volatility,

which is an average over the invariant distribution of the “fast” latent pro-
cess.

Equations (17) and (13)–(15) collectively, uniquely determine V 0
q and

P 0
q , q ∈ {0, 1}. The zero–order value functions V 0

q are given by

V 0
q (x) = (−1)q

∫ P 0
q

Iq

Gq(x, x)Rq(x)dx (18)

for q ∈ {0, 1}, with Gq(x, x) the Green’s functions of equation (17) sub-
ject to (13)–(15). To conserve space, these, along with the procedure to
determine the zero–order resource price thresholds P 0

q , are relegated in an
appendix (Appendix C) that is submitted as supplementary material to the
manuscript.

Once V 0
q and P 0

q are completely determined, this step also determines
V 2
q , up to a constant of p. By substituting the solvability condition (16)

into the right–hand side of equation (12) and rearranging, one gets

L0V
2
q = (⌈L2⌉ − L2)V

0
q = ∆f(y)Θ0(p), (19)
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with
∆f(y) = 1

2

(

f
2 − f 2 (y)

)

and Θ0
q (p) = p2

∂2V 0
q

∂p2
. (20)

Since the operator L0 involves differentiations with respect to the y variable
only, and V 0

q only depends on p, one can write

V 2
q (p, y) = Φ0

q(p, y) +X0
q (p) (21)

with Φ0
q(p, y) the solution of

L0Φ
0
q(p, y) = ∆f(y)Θ0(p), (22)

and X0
q (p) a constant with respect to y that will be specified at the n = 4

order.2

Thus, in step n = 2, V 0
q and P 0

q are completely specified, and V 2
q is

determined up to the function X0
q (p).

Step 3

The procedure is similar for each n > 2, where value function and re-
source price threshold “corrections” V n−2

q and P n−2
q are completely specified,

and V n
q is obtained up to an unknown function of p (to be obtained at order

n+ 2).
Equations (8)–(11) now become

L0V
n
q + L1V

n−1
q + L2V

n−2
q = 0 (23)

∑

k,ℓ,m:
k+ℓ+m=n−2

C (k, ℓ)P
(ℓ),m

q = 0 (24)

∑

k,ℓ,m:
k+ℓ+m=n−2

(ℓ+ 1)C (k, ℓ+ 1)P
(ℓ),m

q = 0 (25)

lim
p→Iq

V n−2
q (p) = 0 (26)

2More accurately, one can write V 2

q (p, y) = Ψ0

q(y)Θ
0

q(p) + X0

q (p), with Ψ0

q(y) the
solution of L0Ψ

0

q(y) = ∆f(y) in this instance. However, for higher orders of n, it will be
notationally more convenient to write Ψ0

q(y)Θ
0

q(p) as Φ
0

q(p, y).
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From the Fredholm alternative, the solvability condition is

−〈L1V
n−1
q , ϕ〉 − 〈L2V

n−2
q , ϕ〉 = 0, (27)

which reduces to ⌈L2V
n−2
q ⌉ = ⌈L2⌉V n−2

q = −⌈L1V
n−1
q ⌉ and

1

2
f
2
p2
∂2V n−2

q

∂p2
+ µp

∂V n−2
q

∂p
− rV n−2

q = −ωpΩn−2
q (p) , (28)

with ω and Ωn−2
q (p) defined in Appendix B, for all n > 2. Equation (28),

subject to (24)–(26) completely specifies V n−2
q and P n−2

q . Two notes are in
order here:

(a) Given the definitions in Appendix B, it is easy to verify that the right–
hand side of (28) is always a known (albeit involved) expression of
value functions V 0

q , . . . , V
n−3
q which are already determined at previous

orders of n.

(b) For n > 2, the system (28)–(26) is no longer a free boundary problem.
Once V n−2

q are determined from (28) and (26), equations (24) and
(25) can be solved analytically for the price threshold “corrections”,
P n−2
q .

Both of these notes will become apparent in the next section, where our
procedure is applied to a known problem.

Finally, substituting the solvability condition (27) into the right–hand
side of equation (23) and rearranging, yields

L0V
n
q = (⌈L2⌉ − L2)V

n−2
q − L1V

n−1 + ⌈L1V
n−1⌉.

With V n−2
q completely specified in this step, and V n−1

q known (up to a
function of p) from the previous step, the solution of V n

q , up to a function
of p, is

V n
q = Φn−2

q (p, y) +Xn−2
q (p) (29)

with Φn−2
q (p, y) defined in Appendix B for all n > 2.

Step 4

Step 3 is repeated for all orders O (δn−2), n > 2 for which the asymptotic
terms of the optimal switching solution are required.
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Step 5

Determine the solutions V δ
q (p, y) and P δ

q (y) by adding up the asymptotic
terms, as in equation (6).

In the next section we demonstrate the procedure by deriving asymp-
totic terms of the optimal solution under “fast” mean–reverting stochastic
volatility, for a simple switching problem that is highly–cited in the litera-
ture.

5. Effects of “fast” mean–reverting stochastic volatility on opti-

mal switching decisions

In this section, we illustrate the effects of “fast” mean–reverting stochas-
tic volatility on the optimal switching strategy, using a general ‘fast” mean–
reverting stochastic volatility model in the context of the Dixit (1989) en-
try/exit problem. In the context of this entry/exit problem, the starting
point for the analysis is the quasi–variational inequality in (5), with the
choice of Rq(Pt) = (Pt − c)× 1q=1, for q = 0, 1, with c a given constant.

In applying Steps 0 and 1 of the procedure, we observe that V 0
q and V 1

q ,
q = {0, 1} are independent of y.

In Step 2, for n = 2 the value functions V 0
q (P ) for q ∈ {0, 1}, are

uniquely specified via equation (18), whose solution yields,

V 0
q (P ) = (1− q)APα + q

(

BP β +
P

r − µ
− c

r

)

, q ∈ {0, 1},

with

α, β =
−µ+ 1

2
f
2 ±

√

2f
2
r +

(

µ− 1
2
f
2
)2

f
2 (30)

Moreover, the system

A
[
P 0
q (y)

]α
+ (−1)qKq = B

[
P 0
q (y)

]β
+
P

q
0 (y)

r − µ
− c

r
(31)

Aα
[
P 0
q (y)

]α−1
= Bβ

[
P 0
q (y)

]β−1
+

1

r − µ
(32)

for q ∈ {0, 1} is a system of four algebraic euations, the solution of which
determines the constants A,B and the zeroth–order product price switching
thresholds P 0

0 (y) , P
0
1 (y).
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Note that this is formally identical to the constant–volatility solution
in Dixit (1989, eq. 6–7 and 12–15), with the important difference that the

constant variance σ2 has to be replaced by f
2
, the so–called effective vari-

ance which is the average of the volatility function f 2(y) over the invariant
measure of the process Y . Therefore, the leading term is equivalent to the
solution given by a constant volatility model, but the constant volatility de-
pends on the choice of the volatility function f(y) employed in the original
multi–scale stochastic volatility model. All following orders, n = 3, 4, . . . are
essentially corrections to this constant, effective volatility case, corrections
that are the effect of fast mean–reverting stochastic volatility.

Moreover, from (20)–(22), V 2
q is

V 2
q (p, y) = ΓP 2

∂2V 0
q (p)

∂p2
+X0

q (p), Γ = L−1
0 [∆f (y)]

with X0
q (p) to be determined at Step 4. Note that the exact value of the

constant Γ depends on the choice of f(y).
Step 3, for n = 3, uniquely specifies the value functions V 1

q (P ) and price
thresholds P 1

q (Y ), for q = {0, 1}, via equation (28) that becomes

⌈L2⌉V 1
q = −⌈L1V

2
q ⌉ = −ωPΩ1

q (P ) . (33)

Given the definition of Ω1
q from Appendix B, one can verify that the right–

hand side is just a function of P only. From (24)–(26), the relevant boundary
conditions are

C (1, 0) + C (0, 1)P 1
q (y) = 0 (34)

C (1, 1) + C (0, 2)P 1
q (y) = 0 (35)

lim
p→Iq

V 1
q (p) = 0 (36)

Solving (33)–(36) yields the orderO (δ) value function “corrections” that
are due to fast mean–reverting stochastic volatility

V 1
q (P ) = ωΓ

[
(1− q)Pα + qP β

]

[

(−1)qDq lnP

f
2
(α− β)
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+

(

D0P
α
0 +D1P

β
0

)

P
(1−q)β+qα
1 lnP0 −

(

D0P
α
1 +D1P

β
1

)

P
(1−q)β+qα
0 lnP1

f
2
(α− β)

(

P
β
0 P

α
1 − Pα

0 P
β
1

)





(37)
and the order O (δ) “corrections” to the switching thresholds,

P 1
q (y) = ωΓ

×
(
D0P

α+1
q +D1P

β+1
q

) (

Pα
0 P

β
1 − P

β
0 P

α
1

)

+ Pα+β+1
q

(

D0P
α
1−q +D1P

β
1−q

)

(α− β) ln P1

P0

f
2
(

Pα
0 P

β
1 − P

β
0 P

α
1

)

(α− β)
[

Bβ (β − 1)P β
q − Aα (α− 1)Pα

q

]

(38)

In the above, Dq =

{
D0 = Aα2 (α− 1), if q = 0
D1 = Bβ2 (β − 1), if q = 1

, α, β are as in (30)

and the constants A,B are as determined in equations (31)–(32). More-
over, in order to simplify notation, the zeroth–order product price switching
thresholds P 0

q , q = {0, 1} are denoted as Pq ≡ P 0
q , q = {0, 1} in equations

(37)–(38) above (i.e. the zero of the order in the superscript is dropped for
notational convenience).

This step also provides information regarding V 3
q (P ), through equation

(19) that becomes

L0V
3
q (P ) = ∆f (y)P 2

∂2V 1
q (P )

∂P 2
− ωf (y)P

∂2V 2
q (P )

∂P∂y
+ ωΓDqP

(1−q)α+qβ

This determines V 3
q (P ), up to a constant of P , which is used in the next

order to uniquely determine the second–order corrections V 2
q (P ) and P 2

q (y).
After the asymptotic terms are estimated (by repeating this step of the

procedure for all needed orders of δ, in Step 5 the solution is approximated
by equation (6).

The above results clearly show that the effect of “fast” mean–reverting
stiochastic volatility on the optimal switching decisions are quantified through
the statistical average f , its variance and its correlation ρ with the product
price process, as well as the constant Γ. All these quantities can be ex-
plicitly calculated once a specific volatility model is chosen. The next two
examples demonstrate this.

16



Example 1: The stochastic volatility model in Fouque et al. (2003c)

As a first example, we choose the stochastic volatility model employed
by Fouque et al. (2003c), where the product price change volatility σt is
related to the latent “fast” mean–reverting factor y via σt = f (y) = exp (y),
restricted on a compact subset so as not to affect the calculations within
the accuracy of our comparisons. This example has also been employed by
Zhu and Chen (2011a) in their numerical investigation.

It can be shown that for this specific stochastic volatility model, the
parameters f and Γ involved in (37)–(38) are given by

f
2
= e2(m+ν2) and Γ =

e5ν+3m
(

1−e2ν
2
)

2ν2

To investigate how “fast” mean–reverting stochastic volatility affects
optimal switching and hysteresis, define for q = {0, 1}

V FPSS
q (P, y)− V D

q (P ) ≈ δV 1
q (P ) and P FPSS

q (y)− PD
q ≈ δP 1

q (y)
(39)

as the value function and the optimal switching threshold differences for
the idle (q = 0) and active (q = 1) modes under the stochastic volatility
model in Fouque et al. (2003c, FPSS) and the constant–volatility problem
in Dixit (1989, D), with the constant σ set equal to f . For simplicity, only
the first–order δ differences are considered.

The effect (of the first order corrections) due to “fast” mean reverting
stochastic volatility is quantitatively assessed in Figures 1–3. What is no-
ticeable immediately in Figure 1 is that the value differences due to “fast”
mean–reverting stochastic volatility are not monotone with respect to the
resource price P . An equally interesting aspect of Figure 1 is that the value
differences in (39) change sign (from positive to negative or vice–versa).
Both the position of the maximum, as well as the zero crossing point can
be obtained analytically in terms of the parameters of the problem (and we
make their exact formulae available upon request).

Figure 2 focuses on the effect of “fast” mean–reverting stochastic volatil-
ity on P FPSS

q (y) and PD
q , the product price thresholds that warrant optimal

switching from the idle (q = 0) and the active (q = 1) modes under stochas-
tic and constant volatility.

Panel (a) of Figure 2 plots (bold line) the constant σ = f switching
thresholds in Dixit (1989), as a function of the switching costs K0 = K1 =
K, which are restricted to be symmetric. Also plotted are the “corrected”
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Figure 1: The Figure plots, for different values of the correlation coefficient ρ, the value function differences V FPSS
q (P )−V D

q (P )
for the idle (q = 0, Panels (a)–(c)) and active (q = 1, Panels (b)–(d)) modes under the stochastic volatility model in Fouque
et al. (2003c, FPSS) and the constant–volatility problem in Dixit (1989, D), with the constant σ set equal to f . In Panels (a)–(b)
(respectively (c)–(d)), the correlation coefficient ρ is negative (respectively positive). In Panels (a)–(c) (respectively (b)–(d)) the
product price P takes values in the “idle region”

[
0, P δ

0

]
(respectively in the “active region”

[
P δ
1
,+∞

]
). In all panels the rest of

the parameters are r = 0.025, µ = 0.02, K0 = 4, K1 = 2, c = 1, m = ln 0.1, ν = 1/
√
2 and δ = 1/

√
200.
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Figure 2: The Figure plots in Panel (a) PFPSS
q and PD

q , i.e. the optimal switching product price thresholds under the stochastic
volatility model in Fouque et al. (2003c, FPSS) and the constant–volatility problem in Dixit (1989, D), with the constant σ
set equal to f . The thresholds are plotted as a function of the switching costs K0 and K1, which are set to equal values, and
for different values of the correlation coefficient ρ. Panels (b) and (c) plot

(
PFPSS
q − PD

q

)
/PD

q ≈ δP 1

q /P
D
q , i.e. the optimal

switching threshold “corrections” due to “fast” stochastic volatility δP 1

q , as a percentage of PD
q , the optimal switching product

price thresholds under the constant–volatility problem in Dixit (1989, D). Panels (b) and (d) only plot the q = 0 (i.e. leave–
idle–mode) case in order to save space; the q = 1 (i.e. leave–active–mode) percentage “corrections” are qualitatively identical. In
Panel (c), the correlation between changes in the product price P and in the latent volatility factor Y is ρ = −0.20. In all Panels,
the rest of the parameters are r = 0.025, µ = 0.02, m = ln 0.1, ν = 1/

√
2, K0 = 4, K1 = 2, c = 1 and δ = 1/

√
200.
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switching thresholds P 0
q +δP

1
q , for ρ = ±0.20. Depending on the correlation

coefficient, the “fast corrected” switching thresholds can be above or below
the constant–volatility ones. For ρ < 0 which is the most usual case in
financial variables (see for example Fouque et al., 2000), the owner of the
process/project that can be switched from and to an idle/active mode will
optimally decide to leave the current mode at lower product prices: Lower
prices (than those in the constant volatility case with σ = f) lead to project
activation and the owner is willing to incur more losses before activation is
suspended on the down side.

The degree by which P FPSS
q (y) < PD

q for ρ < 0 is found to be positively
related to the “vol of vol” level ν and the long–run volatility level m, and
negatively related to the correlation level ρ. These relationships can be
visualized with the aid of Panels (b) and (c) in Figure 2 that plot the per-
centage changes in the thresholds due to “fast” mean–reverting stochastic
volatility. In Panel (b), as ρ → ±1 the “corrections” δP 1

q can be as sig-
nificant as ±20% of the constant–vol benchmarks PD

q . In Panel (c) it can
be seen that this percentage correction appears convex in m and ν, that
positively determine the effective volatility level f .

“Fast” mean–reverting stochastic volatility not only affects the position
of the switching thresholds, but also the likelihood of reaching them in fi-
nite time as Figure 3 demonstrates. To accomplish this we first demonstrate
how one can calculate the conditional probability of switching from the cur-
rent mode by a finite time horizon under “fast” mean–reverting stochastic
volatility (and then compare it with the constant volatility case σ = f in
Figure 3). To conserve space, this is summarised in an appendix (Appendix
D) that is submitted as supplementary material to the manuscript.

Panels (a) and (b) plot the conditional probability in equation (D.5) of
Appendix D for q = 0, as a function of m, δ and ν. The probability is scaled
by the corresponding conditional probability under the constant–volatility
setting in Dixit (1989, D). Ratios above unity indicate that switching from
the idle mode and activating the investment project is significantly more
probable under “fast” mean–reverting stochastic volatility than the constant
volatility benchmark. Ratios are below unity for q = 1 (not plotted to save
space), suggesting that deactivating the investment project is significantly
less probable under “fast” mean–reverting stochastic volatility.

Since activating (deactivating) an investment project becomes more (less)
probable, a natural question that arises is whether one would observe more
or less frequent mode switches under “fast” mean–reverting stochastic volatil-
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Figure 3: The Figure plots in Panels (a) and (b) the ratio Pr(τq < T )/Pr(τDq < T ), i.e. the conditional probability of reaching

the optimal switching product price threshold P δ
q until time T (starting at Ps ≡ p = 1

2

(
P δ
0
+ P δ

1

)
) under the stochastic volatility

model in Fouque et al. (2003c, FPSS) as a percentage of the same conditional probability but under the constant–volatility
problem in Dixit (1989, D). Panel (c) plots the ratio Pr(Pt ≤ P δ

1
,mP

t ≥ P δ
0
)/Pr(Pt ≤ P1,m

P
t ≥ P0). The numerator is the

conditional probability of starting at Ps ≡ p = 1

2

(
P δ
0
+ P δ

1

)
in mode q = 0, switching to mode q = 1 and subsequently back to

mode q = 0 again until time T under the stochastic volatility model in Fouque et al. (2003c, FPSS). The denominator is the same
conditional probability but under the constant–volatility problem in Dixit (1989, D). Panels (a) and (b) only plot the q = 0 (i.e.
leave–idle–mode) case in order to save space; the q = 1 (i.e. leave–active–mode) relative probabilities are qualitatively identical.
In all Panels, the rest of the parameters are r = 0.025, µ = 0.02, m = ln 0.1, ν = 1/

√
2, ρ = −0.20, K0 = 4, K1 = 2, c = 1 and

δ = 1/
√
200.
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ity, compared to the constant volatility case. The answer, for reasonable
parameter values (namely a negative correlation ρ between volatility and
price), is that more frequent “switches” are to be expected. An indication
of this is provided in Panel (c) of Figure 4 that plots the conditional proba-
bility in equation (D.6) of Appendix D. This is the probability of switching
from idle (q = 0) to active (q = 1), to idle (q = 0) again in finite time
T , and it is again scaled by the corresponding conditional probability un-
der the constant–volatility case for the purposes of the Figure. Ratios are
above unity for any parameter values (not only the ones plotted), suggest-
ing that “fast” mean–reverting stochastic volatility makes an agent switch
between operational modes more frequently when compared to the constant
volatility case.

Overall, the numerical investigation in this subsection suggests that un-
der “fast” mean–reverting stochastic volatility that is negatively correlated
with the product price process (as is usually the case), the owner of a pro-
cess/project that can be switched from and to an idle/active mode will be
more willing to switch to the active state, will endure higher losses before
deciding to suspend operations, and is likely to make more frequent switches
in a given investment horizon. This willingness and increased frequency ap-
pears more pronounced for lower (more negative) correlation levels, faster
volatility mean–reversion speeds and higher effective volatility levels.

Example 2: The stochastic volatility model in Renault and Touzi (1996)

We provide an additional example of the approach by employing a corre-
lated version of the stochastic volatility model in Renault and Touzi (1996),
which is based on the model by Hull and White (1987). In these models
the product price change volatility σt is related to the latent “fast” mean–
reverting factor y via σt = f (y) =

√
y. It can be shown that for this specific

stochastic volatility model,

f
2
= m

and

Γ = − 1

25/4
√
πν

[
ν√
2
Γ

(
3

4

)

M

(

−1

4
,
1

2
,−m2

2ν2

)

+mΓ

(
5

4

)

M

(
1

4
,
3

2
,−m2

2ν2

)]

where Γ (z) =
∫ +∞
0

tz−1e−tdt is the Gamma function and M (θ, ϑ, x) is
Kummer’s confluent hypergeometric function (see Abramowitz and Stegun,
1972).

Choosing a different specific stochastic volatility model changes the mag-
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Figure 4: The Figure plots in Panel (a), for different values of the correlation coefficient ρ, the value function difference
V HWRT
q (P, y) − V D

q (P ) for the idle (q = 0) mode over the “idle region” P ∈
[
0, P δ

0

]
, under the stochastic volatility model

in Hull and White (1987) and Renault and Touzi (1996) and the constant–volatility problem in Dixit (1989), with the constant
σ set equal to f . Panel (b) plots the same value difference as a function of ν and m, i.e. the volatility and the long–run mean of
the latent “fast” stochastic volatility factor Y in equation (2) for ρ = −0.20. Panel (c) plots PHWRT

q and PD
q , i.e. the optimal

switching product price thresholds under the two models, as functions of the switching costs K0 and K1, which are set to equal
values, for different values of the correlation coefficient ρ. Panel (d) plots, for the idle (q = 0) mode as a function of ν and m
and for ρ = −0.20,

(
PHWRT
q − PD

q

)
/PD

q = δP 1

q /P
D
q , i.e. the optimal switching threshold “corrections” due to “fast” stochastic

volatility
√
ǫP 1

q , as a percentage of PD
q , the optimal switching product price thresholds under the constant–volatility problem in

Dixit (1989, D). In all Panels, the rest of the parameters are r = 0.025, µ = 0.02, K0 = 4, K1 = 2, c = 1, m = 0.027, ν = 0.30
and δ = 1/

√
200.
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nitudes of value function and switching threshold differences, but does not
affect qualitatively the impact of “fast” mean–reverting stochastic volatility
on optimal switching decisions, as Figure 4 demonstrates. Value differences
V HWRT
q (P, y)−V D

q (P ) in Panels (a) and (b) are again non–monotone with
respect to P and their sign can be positive or negative depending on pa-
rameter values (ρ,m and ν). Moreover, in Panels (c) and (d) the “fast
corrected” switching thresholds are again found to be above or below the
constant–volatility ones depending on the correlation coefficient sign, and
the percentage threshold correction due to “fast” stochastic volatility are
non–linear inm and ν, that positively determine the effective volatility level
f . Similarly, the conditional probabilities of reaching the switching thresh-
olds (not plotted to save space; available upon request) are qualitatively
similar to the ones in the previous subsection.

Overall, it should be stressed that the intention of the specific stochastic
volatility examples presented in this section, is simply to demonstrate the
ability of the perturbation method in Fouque et al. (2003a) to “correct” the
well–known solution of the general optimal switching problem under con-
stant volatility. The analytic results that were presented for the stochastic
volatility models in Fouque et al. (2003c), Hull and White (1987) and Re-
nault and Touzi (1996), for the optimal switching problem in Dixit (1989)
are merely intended as indications of this ability.

6. Conclusions

Optimal switching problems are at the heart of many economic decisions:
from the personnel hiring and firing policies of firms and universities, to the
optimal production management of natural resource investments under fixed
costs, to the entry and exit from foreign direct investments in the face of
fluctuating exchange rates.

Empirical research has provided ample evidence that many economic
variables of interest—such as commodity prices, equity prices and exchange
rates—exhibit volatility that is (partly or wholly) governed by a quickly
mean–reverting stochastic factor (see for example the empirical evidence in
Alizadeh et al., 2002; Fouque et al., 2003b; Hikspoor and Jaimungal, 2008).

Multi–scale stochastic volatility models (Fouque et al., 2003a) that allow
for latent volatility factors to quickly mean–revert and decorrelate exponen-
tially fast have gained much attention in the option pricing literature. How-
ever, it is not clear whether the presence of a “fast” mean–reverting stochas-
tic volatility factor in the dynamics of commodity prices or exchange rates
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has any implications for the optimal policies of switching problems that are
contingent on such dynamics. More importantly, the direction and nature of
any such implications is still in our view an open issue worth investigating.

This paper formulates and solves an infinite–horizon, optimal switching
problem under uncertainty and a general class of stochastic volatility models
that exhibit “fast” mean–reversion. Using the perturbation method (as in
Fouque et al., 2000), the general optimal switching problem is divided into a
sequence of simplified valuation systems, each one offering a “correction” of
different order to the constant–volatility solution that has been documented
in the literature. These corrections, that are the effect of “fast” stochastic
volatility, allow one to analytically approximate the solution of the general
switching problem under fast mean–reverting stochastic volatility up to the
desired order.

As a demonstration of the approximation, we explicitly derive the “cor-
rection terms” due to fast mean–reverting stochastic volatility for the highly–
cited entry and exit switching model of Dixit (1989) under a number of
alternative “fast” volatility dynamics. There we show that when the un-
certainty in an economic system exhibits fast mean–reverting stochastic
volatility: (a) optimal switching between modes will be more frequent, (b)
agents will be more willing to activate earlier and will endure higher losses
before deciding to optimally suspend operations and (c) findings (a) and (b)
are more pronounced for lower (more negative) levels of correlation between
price and volatility uncertainty, faster volatility mean–reversion speeds and
higher effective volatility levels. We believe these findings should be of inter-
est to the managers of processes/projects that can be switched from and to
an idle/active mode, contingent on the evolution of economic variables that
are documented to exhibit fast mean–reverting stochastic volatility such as
exchange rates and commodity prices.

A. Appendix: Proof of Proposition 1

With the Hamilton–Bellman–Jacobi equation in the quasivariational in-
equality form of equation (5), it is easy to see that the problem can be
written as the following system of partial differential equations

LδV δ
q (p, y) = −Rq (p) (A.1)

V δ
1−q

(
P δ
q (y) , y

)
− V δ

q

(
P δ
q (y) , y

)
= Kq (A.2)
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∂

∂p

[
V δ
1−q (p, y)− V δ

q (p, y)
]∣
∣
p=P δ

q (y)
= 0 (A.3)

lim
p→Iq

V δ
q (p, y) = Lq (A.4)

for q = {0, 1}.
Equations (A.2) and (A.3) describe what happens at the optimal re-

source price levels P δ
q (y), and are sometimes referred to as the “value–

matching” and “smooth–pasting” conditions (see Dumas, 1991; Shackleton
and Sødal, 2005). The limits in equation (A.4) suggest that the values
V δ
q (p, y), for extremely high or low product prices where switching is es-

sentially “worthless”, should converge to the present value of operating in
mode q forever.

Substituting in equation (A.1) the asymptotic expansion of the value
functions and product price thresholds in (6), it should be easy to verify
that at each order O (δn−2), for n ∈ {0, 1, 2, . . .}, the left–hand side is always
of the form L0V

n + L1V
n−1 + L2V

n−2, or equivalently
∑n

j=(n−2)+ Ln−jV
j
q

with j ∈ {(n− 2)+, . . . , n}. The right–hand side is−Rq(p) at orderO (δ0) =
O (1) for n = 2 and zero for any other n. Hence equation (8) in the text.

In order to get equation (9) from (A.2), write the latter, by using the
expansion in (6) as

+∞∑

k=0

δkV k
1−q

(
+∞∑

k=0

δkP k
q

)

−
+∞∑

k=0

δkV k
q

(
+∞∑

k=0

δkP k
q

)

= Kq

where k is used as the counter and the dependence of P k
q on y is dropped for

notational convenience. Take each term V k
.

(∑+∞
k=0 δ

kP k
q

)
in the summations

above and expand them around P 0
q to get

+∞∑

k=0

δk







+∞∑

ℓ=0




1

ℓ!

∂ℓV k
1−q

∂P ℓ

∣
∣
∣
∣
∣
P=P 0

q

×
(

+∞∑

k=1

δkP k
q

)ℓ










−
+∞∑

k=0

δk







+∞∑

ℓ=0




1

ℓ!

∂ℓV k
q

∂P ℓ

∣
∣
∣
∣
∣
P=P 0

q

×
(

+∞∑

k=1

δkP k
q

)ℓ









= Kq (A.5)
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Observe that

+∞∑

k=1

δkP k
q = δ

+∞∑

m=0

δmPm+1
q = δ

+∞∑

m=0

δmP
m

q

where the last equality comes from the definition of the convenient re–
labelling we applied in equation (7). Define

ψ (δ) =
∑+∞

m=0 δ
mP

m

q and C (k, ℓ) = 1
ℓ!

∂ℓ

∂pℓ

[
V k
1−q (p)− V k

q (p)
]∣
∣
p=P 0

q (y)

and substitute in (A.5) to get

+∞∑

k=0

δk

{
+∞∑

ℓ=0

C (k, ℓ) [δψ (δ)]ℓ
}

= Kq (A.6)

Observe that

ψ (δ)2 =

(
+∞∑

m=0

δmP
m

q

)(
+∞∑

m=0

δmP
m

q

)

=
+∞∑

m=0

δm
m∑

i=0

P
m−i

q P
i

q

=
+∞∑

m=0

δmP
(2),m

q ,

so that upon iteration

ψ (δ)ℓ =

(
+∞∑

m=0

δmP
m

q

)(
+∞∑

m=0

δmP
(ℓ−1),m

q

)

=
+∞∑

m=0

δm
m∑

i=0

P
(ℓ−1),m−i

q P
i

q

=
+∞∑

m=0

δmP
(ℓ),m

q

with P
(ℓ),m

q defined in the proposition as the m–term of the ℓ–times self–

convolution of P
m

q . This can be recursively calculated via

P
(ℓ),m

q =
ℓ∑

i=0

P
(ℓ−1),m−i

q P
i

q,
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with P
(0),m

q = 1{m=0} =

{
1, if m = 0
0, if m 6= 0

by definition.

Substitute this in equation (A.6) to get

+∞∑

k=0

+∞∑

ℓ=0

+∞∑

m=0

δk+ℓ+mC (k, ℓ)P
(ℓ),m

q = Kq.

At each order of δn−2 with n ≥ 2, only the terms k + ℓ+m = n− 2 apply,
thus equation (9) in the proposition. The remaining conditions in equations
(A.3)–(A.4) can be treated similarly. For future reference, one can write the
full problem (for all n, and q ∈ {0, 1}) as

+∞∑

n=0

δn−2

n∑

j=(n−2)+

Ln−jV
j
q (p) = −Rq (p) (A.7)

+∞∑

k=0

+∞∑

ℓ=0

+∞∑

m=0

δk+ℓ+mC (k, ℓ)P
(ℓ),m

q = Kq (A.8)

+∞∑

k=0

+∞∑

ℓ=0

+∞∑

m=0

(ℓ+ 1) δk+ℓ+mC (k, ℓ+ 1)P
(ℓ),m

q = 0 (A.9)

+∞∑

n−2=0

lim
p→Iq

δn−2V n−2
q (p) = Lq (A.10)

from which it is not difficult to verify that for each n = {0, 1, . . .}, the
value functions V n

q and the price thresholds P n
q are determined by the sub–

problems of (A.7)–(A.10) that are summarised in Proposition 1 of the text.3

3Note that n defines the order O
(
δn−2

)
of the asymptotic expansion but also uniquely

determines the values of j, k, ℓ,m and i. The summation index j is simply equal to the
non–negative integers in {n − 2, n − 1, n}. The non–negative integers k, ℓ and m are
uniquely defined by n, as only the permutations of k, ℓ,m for which k + ℓ +m = n − 2
are relevant for the δn−2 order in (A.8)–(A.9). Finally, i in the self–convolution of the
price thresholds is uniquely determined by the value of ℓ.
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B. Appendix: Definitions for equations (28) and (29)

Recall that ∆f (y) = 1
2

(

f
2 − f 2 (y)

)

, and define Θn
q (p) = p2

∂2V n
q

∂p2
and

ω =
√
2νρ. Then, for all n > 2 equation (29) is

V n
q = Φn−2

q (p, y) +Xn−2
q (p)

with Φn−2
q (p, y) recursively calculated via

Φn
q (p, y) = L−1

0

{

∆f (y)Θn
q (p) + ωp

[

Ωn
q (p)− f (y)

∂2Φn−1
q

∂p∂y

]}

,

for q = {0, 1}, with

Ωn
q (p) = ⌈f (y)

∂2Φn−1
q

∂p∂y
⌉,

starting from Φ0
q (p, y) = L−1

0

[
∆f (y)Θ0

q (p)
]
in equation (21) and Ω0

q (p) ≡
0.
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