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Stepwise Investment Value under Stage Specific ParametersAbstract
We provide a general model for comparing stepwise and lumpy investments, considering stage

specific volatilities, drifts and possibility of project failure.  Stepwise investments allow for

interim project value realizations, instead of considering only a final project value as in

sequential investments.  We conceive of an environment in which stepwise investment costs

exceed lumpy investments, even if the total combined project value of the stages equals the

lumpy project value.  We find there are tight conditions on the parameter values required in order

to compare the two strategies.  Also that increased uncertainty does not necessarily reduce the

relative value of stepwise investments. We evaluate the tradeoffs between the proportion of

project value in each stage, and the relative investment costs. Our model could be extended to

allow for inhibited or enhanced second stage project values, or even reduced investment costs,

due to a learning effect, in arriving at those optimal trade-offs.
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Stepwise Investment Value under Stage Specific Uncertainty

1 Introduction

Does the flexibility of stepwise investments with interim (but incomplete) project values result in

greater investment attractiveness compared to a lumpy once-for-all investment? Kort et al.

(2010) argues that following real option intuition, the flexibility of the stepwise strategy makes it

more attractive especially with greater uncertainty, but their analytical results do not endorse this

view.  Higher uncertainty makes lumpy investment relatively attractive.

Investment attractiveness may be defined in terms of the real option value (or the option value

coefficients) of the investment opportunity, or alternatively in terms of the value threshold that

justifies immediate investment.  We use both measures of investment attractiveness, and examine

the sensitivity of both thresholds and real option values to changes in project value uncertainty.

We extend the Adkins and Paxson (2014a) sequential investment model, which does not consider

interim realized project values, but only a completed project value at the end. However, we allow

for stage specific project volatilities as in Cassimon et al. (2011) and also for stage specific value

drifts or for other uncertainties regarding project failure as in Adkins and Paxson (2014b).

Rodriques (2009) uses differential segment demand volatilities, investment costs, and some other

measures, to evaluate optimal timing among segments, under an endogenous regime-switching

process. Kort et al. (2010) propose that the American perpetuity option value for a two-stage

sequential investments is equal to the sum of the separate option values, but this formulation

suffers the defect of a lack of compoundedness in the sense that the first and second stage option

values are independent.
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Some authors eschew the reputed merits of closed-form European compound options and solve

the sequential investment opportunity through the power of numerical techniques.   A trinomial

lattice formulation is used by Childs and Triantis (1999) to solve a multiple sequential

investment model having cash-flow interaction. Schwartz and Moon (2000) provide a numerical

solution for complex R&D options, with project failure that does not always decline as the

project approaches completion, but with constant asset volatility, drifts and investment cost

volatility over four stages. Cortazar et al. (2003) consider four “exploration” stages with success

probability increasing as the stages near completion (production) with investment cost almost

always increasing near completion.  The early (pure exploration) stage has primarily geological-

technical risk (represented by a zero-drift constant Brownian motion) independent of the

production stage commodity price risk.  An implicit finite-difference numerical solution provides

a value without options, and with operating, development and exploration options as a function

of expected copper mine size. Koussis et al. (2013) provide numerical solutions for multi-stages

with multiple options. The shortcomings of these solution methods are the possibly onerous and

not always transparent calculations.

Our analysis is founded on the idea that the betas for the two stages may be different because the

information set has altered between the times of exercising the stage-1 and stage-2 investments

since the investor benefits from operating the first (incomplete) part of the project. The model is

reworked with different betas for stage-1 and stage-2. This makes the current formulation to be

richer in scope and wider in interpretation. Different betas for different stages may be due to

different stage specific project value yields, volatilities or the possibility of project failure.

Based on value maximization, the stepwise strategy is assessed to be more attractive than the

lumpy strategy whenever it is both feasible and viable. The stepwise strategy is feasible provided

its stage-1 project threshold level is less than that for the lumpy strategy, indicating that the

stepwise option is always exercised first. The stepwise strategy is viable provided its stage-1

option value is greater. By treating the contexts underpinning the stage-1 stepwise strategy and

the lumpy strategy as identical, the concepts of feasibility and viability are formulated as a
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discriminatory condition that differentiates between the two strategies, given that the context

underpinning the stage-2 stepwise strategy is different. Because of the absence of a closed-form

solution for this condition, we use numerical simulation to identify the effect of variations in key

model parameters on the condition. Essentially, any changes enhancing the property of the

stepwise strategy results in a less restrictive condition. Finally, we consider the role of

differences between the stage-1 and -2 parameters. A less restrictive condition results from a

gain in the stage-2 volatility relative to its stage-1 value but a decline in stage-2 failure

probability relative to its stage--1 value. The stepwise strategy is more attractive whenever the

range of stage-2 possibilities enlarges or its failure probability declines.

We believe that the stepwise strategy is more attractive than lumpy investment if both stage

option value coefficients (A1, A2) are greater than for the lumpy option value coefficients (A0),

or the project value thresholds (V1, V2) are both lower (V0).  The results are often ambiguous,

or dependent on the level of the relative betas. At very low beta 2, A0<A1, A2, but V1<V0<V2,

but at high beta 2  0 1 2,A A A and  0 1 2,V V V .  These beta differentials could be due to

volatility levels (high volatility results in low betas) or when there is a greater probability of the

stage-1 option failing than for stage-2, which is common.

2 The Model

A firm, assumed to be without a current earnings stream, is considering two alternative strategies

for investing in a project. Either the firm invests in the project at a single stage, referred to as

“lumpy”, or alternatively at two consecutive distinct stages, referred to as “stepwise”. The two

stages for the stepwise strategy are labeled 1 and 2, respectively. The project value realized by

the lumpy strategy is exactly equal to that generated by the two stages combined under the

stepwise strategy. This means that the project is infinitely divisible and that by completing a 

percentage of the project produces a  percentage of the project’s total value , which implies that

the project value is linear in both revenues and operating cost. In contrast, the total investment
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costs for each of the two strategies are different. The combined investment cost for stages-1 and -

2 under the stepwise strategy is taken to be greater than that under the lumpy strategy. This

represents the additional cost of separating the investment over stages-1 and -2 as well as

reflecting scale economy efficiencies available under the lumpy strategy.

The optimal timing and strategy (lumpy versus stepwise) are determined from the principle of

firm value maximization based on a stochastic formulation. The continuous time model treats

the project value, denoted by V as uncertain, following a geometric Brownian motion (gBm)

process, so it follows that the value for the investment option, denoted by F , is also stochastic.

Further, there exists a possibility that during a time interval dt the option value may collapse to

zero with probability dt , since it is assumed that potentially, project tenability can be

overwhelmingly undermined by emergent factors such as new technologies or changes in taste,

or by the unanticipated arrival of a challenger’s offering having more robust first mover

advantages.

In the model design, variables and parameters may be additionally labeled by a subscript index to

distinguish between the two strategies and the two stages for the stepwise strategy. Variables and

parameters defined for the lumpy strategy model are labeled 0, while those for the stepwise

strategy model are 1 and 2, respectively for stages-1 and -2. The optimal time to invest is

denoted by t̂ and the project value threshold signaling an optimal investment by V̂ . Since the

stage-1 stepwise solution must always occur before the step-2 stepwise solution, we require that

1 2
ˆ ˆt t and 1 2

ˆ ˆV V . We now need to explain the method for deciding between the two alternative

investment strategies. First, the preferred solution must have an earlier optimal start time to

ensure that investment under the preferred strategy is the first to begin. If the stepwise strategy is

preferred to the lumpy strategy, then 1 0
ˆ ˆt t and 1 0

ˆ ˆV V . Second, and given this requirement, the

option value to invest under the preferred strategy at its optimal time must be greater to ensure

value maximization. Again, for the stepwise strategy to be preferred, then    1 1 0 1
ˆ ˆF V F V . So,
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establishing that the stepwise strategy is the preferred alternative requires identifying the full

conditions for    1 1 0 1
ˆ ˆF V F V to be satisfied given that 1 0

ˆ ˆV V .

The project value threshold signaling the optimal time to invest is influenced by several key

model parameters. Besides the probability  , these include the risk-free rate, denoted by r , the

dividend yield associated with the project,  , and the project value volatility,  . All their

magnitudes are determined from the information set held by the decision makers of the firm at

the relevant time. Under the stepwise strategy, the state of the information set may change

between the two stages because of the time difference. During stage-1, the decision makers are

relying on their experiences of similar projects implemented in the past in assessing the

magnitudes of the various parameters. During stage-2, the decision makers not only have access

to this information set but acquire information due to the passage of time and also from the

actualization of the part project. Between the two, the information obtained from actually

operating the part project in the market environment may be thought to be more significant

because it is gained experientially, from the active participation in the market rather than arising

from being a passive player. The change in the state of the information set may be sufficient to

effect a revision in the firm’s estimation of the key parameters at stage-2 relative to stage-1,

which needs to be captured in the model design. In this formulation, the impact of being a

passive player, or the effect of the mere passage of time, on the information set is treated as

negligible and can be ignored. Consequently, the information set facing the decision maker

during stage-1 while deliberating on the stepwise strategy can be treated as identical to that while

deliberating on the lumpy strategy. This means that 1 0  , 1 0r r , 1 0  and 1 0  . If the

risk-free rate is expected to remain constant over time, then 2 1r r as well.

For 0,1, 2J  , the risk-neutral valuation relationship defining the investment option is given by:

   
2

2 21
2 2

0J J
J J J J J J

F F
V r V r F

V V
  

 
    

 
.

Following standard theory, the solution to the valuation function for ĴV V is:
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  J
J JF V A V  , (1)

where 1J  is the positive root of the quadratic equation:

       21
2 1 0J J J J J J J J J JQ r r             . (2)

We note that:

0, 0, 0, 0J J J J

J J Jr

   
  
   
   

   
. (3)

Since we assume that the states for the information sets facing the decision maker when

deliberating on the lumpy and stepwise strategies means are identical, then 0 1  .

Finally, the investment cost is denoted generically by K , with 1 2 0K K K  by assumption. The

additional cost incurred by the stepwise strategy is represented by 1 2 0 0K K K     .

2.1 One-Stage Lumpy Model

Since the single-stage lumpy investment strategy corresponds to the standard model of

investment under certainty, see Dixit and Pindyck (1994), the standard findings apply. We

merely state the main findings. The optimal project value threshold 0̂V is given by:

0
0 0

0

ˆ
1

V K






(4)

and for 0̂V V , the investment option value by:

0
0 0 0 0ROV F A V   (5)

where   00 0
1 1

0 0 0 01A K
      .
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2.2 Two-Stage Stepwise Model

We now consider the model that splits the project investment into two consecutive distinct

stages. The stage-1 investment option is conceived as a compound option, since its exercise

produces not only the value rendered by acquiring the part project but also the stage-2

investment option as well. This implies that the value for the stage-1 option may be dependent on

the stage-2 option value, so when evaluating the stage-1 option value, it is essential to have

already evaluated the stage-2 option value. We adopt the backwardation principle to accomplish

this by first determining the stage-2 option value and then proceed to find the stage-1 option

value.

Between stages-1 and -2, the firm has acquired not only the part project value, but the embedded

stage-2 investment option as well. The firm through its investment at stage-1 is said to acquire a

part project with a value V , where 0 1  denotes the acquired proportion of the entire

project. Then, the value generated by exercising the stage-1 option is the sum of the part project

value V and the stage-2 investment option value  2F V . In determining the value rendered

between stages-1 and -2, the stage-1 investment cost 1K can be safely ignored as it is a sunk

cost. By the conservation principle, the stage-2 investment option is exercised whenever the full

value foregone by exercising the option  2V F V  is exactly balanced by the net value

generated by its exercise, which equals the value rendered by the entire project value V less the

incurred stage-2 investment cost 2K . Optimal stage-2 exercise occurs for 2̂V V , so the value

matching relationship specified as the exact balance between the value foregone instantaneously

prior to exercise,  2 2 2
ˆ ˆV F V  , and the net value generated instantaneously after exercise,

2 2V̂ K , becomes:

 2
2 2 2 2

ˆ ˆ1A V V K    . (6)

Equation (6) adopts the standard form, so:
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2 2
2

2

ˆ .
1 1

K
V


 


 
(7)

and

2
2 2 2F A V  (8)

where    2 22 2
1 1

2 2 2 21 1A K
        .

The stage-1 investment option value can now be determined from the stage-2 option value. The

project value threshold signaling the optimal stage-1 exercise is denoted by 1̂V . Due to value

conservation, the value foregone by exercising the option has to exactly balance the net value

rendered by the exercise, which equals the part project value, V , net of the stage-1 investment

cost, 1K , and the stage-2 investment option value,  2F V , all evaluated at the stage-1 threshold,

1̂V . The value matching relationship becomes:

1 2
1 1 1 1 2 1

ˆ ˆ ˆA V V K A V    . (9)

The smooth pasting condition associated with (9) can be expressed as:

1 2
1 1 1 1 2 2 1

ˆ ˆ ˆA V V A V     . (10)

Since 2A is obtainable from (8), 1̂V is determined after eliminating 1A from (10):

2
1 1 2 1 2 1

1
1 1

ˆˆ
1 1

K A V
V

  
   


 
 

, (11)

which enables 1A to be found using (10) from:

1 2 11
1 2 2 1

1
1 1

ˆ ˆV A V
A

   
 

 

  . (12)
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Generally, there is no closed-form solution for 1̂V , which has to be evaluated numerically.

However, two special cases do exist. The trivial if 2 2  , and the significant if the information

sets at both stages-1 and -2 are identical, since the decision makers have not gained any relevant

additional information from active participation in the market. For the latter case, 1 and 2 are

equal so (11) simplifies to the solution produced by Kort et al. (2010):

1 1
1,

1

ˆ
1KMP

K
V


 



. (13)

Also from (12):

    1
2 12 1 1 1

1
1 1 11

1 2 2 2 1 2
1

ˆ
1 1

V
A A K K


    

   



        .

If 2 1  , then 1̂V equals 1,
ˆ

KMPV plus a positive amount so 1 1,
ˆ ˆ

KMPV V , while if 2 1  , then 1̂V

equals 1,
ˆ

KMPV minus a positive amount so 1 1,
ˆ ˆ

KMPV V , which implies that 1̂V is an increasing

function of 2 around 2 1  . Although 1 2
ˆ 0V    , 2̂V is a decreasing function of 2 as

prescribed by the standard model. Further, when 2 1  there are simplified expressions for

ordering 0̂V , 1̂V and 2̂V , which are 1 2
ˆ ˆV V , 1 0

ˆ ˆV V and 0 2
ˆ ˆV V provided  1 1 2K K K   ,

1K K  and  1 0K K    , respectively. Amongst these, the first is the least restrictive

whilst the last is the most restrictive.

It is crucial to recognize the impact of the difference in the information sets between stages-1 and

-2 if it is reflected in unequal 1 and 2 . Under the Kort et al. (2010) formulation, the states of

the information sets at the two consecutive stages are identical, which implies the actualization

of the part project plays no role in deciding between the two strategies. This assumes that the

actualization following the stage-1 investment does not contribute incrementally to the stage-2

information set and that the acquired experiential knowledge is uninformative. This absence in
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information gain between the two stages is reflected in the equal values for 1 and 2 . When

1 2  , the stage-1 option value is simply the sum of the stage-1 option value in the absence of

a stage-2 and the stage-2 option value. The formulation treats the stage-1 option as a combination

of two discrete and independent options that do not manifest any compoundedness. For the

stage-1 option to become compounded, the parameters 1 and 2 have to be unequal. If

compoundedness is crucial in identifying the characteristics conducive to making the stepwise

strategy more attractive and in discriminating between the two strategies, then the formulation

has to allow the possibility that 1 and 2 may differ.

The stepwise strategy is judged to be more attractive whenever its stage-2 option value exceeds

that for the lumpy strategy for 1 0
ˆ ˆV V V  . Because of (1), a comparative assessment of the

option values reduces to a size comparison of their coefficients. Although the lumpy option

coefficient is specified by
1 1

0 0 1
ˆA V






 , there exists no equivalent closed-form solution for 1A ,

but from (12) it can expressed as:

 
2

1
1

1
1 1

1
1 2

ˆ ˆ
1 ˆ

V V
A

V



 


         
   

(14)

Since the expression within the curly brackets of (14) is always less than 1 because 1 2
ˆ ˆV V by

assumption, for 1 0A A then 1̂V has be less than 0̂V . Although 1 0
ˆ ˆV V for    1 0F V F V ,

tighter conditions on the parameter ranges are required for making more insightful conclusions

on the comparable attractiveness of the two strategies.

3 Numerical Illustrations

In the absence of a closed-form solution, we resort to numerical illustrations to reveal more

precise conditions capable of producing a greater investment option value for the stepwise than
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for the lumpy strategy. The illustrations that we present use various ranges of values for the

different parameters in order to construct an overall picture of the way that the stepwise strategy

is preferential. The analytical focus applied by Kort et al. (2010) is based on comparing the

relative desirability of the two strategies under parameter changes affecting them in identical

ways. In contrast, the approach adopted here is dynamic and investigates the choice between the

two strategies by considering the impact of parameter changes between stages-1 and -2 for the

stepwise strategy while maintaining identical parameter values for the lumpy and the stage-1

stepwise strategy. In this way, we are exploring whether parameter dynamics are crucial in

deciding the choice between the two strategies. The various comparisons of the two strategies are

made by first strictly imposing the condition 1 0 2
ˆ ˆ ˆV V V  and ignoring any non-compliant cases,

and secondly by making conclusions based on the relative magnitudes of 0A and 1A , the option

coefficients for the lumpy and the stage-1 stepwise strategy, respectively, after setting 1 0  ,

1 0r r , 1 0  , 1 0  and 2 1r r .

The various simulations allow 2 to vary but assume 0 remains the same. This convenience

means that the threshold level and option value for the lumpy strategy both remain constant

while those for the stepwise strategy vary according with the variations in the specific

parameters. Throughout our investigations, we maintain a constant lumpy strategy investment

cost by setting 0 1K  but allow the two stepwise investment costs to vary within 1 2 0K K K  .

The base case simulation values are recorded in Table 1, where 1K K  , the Kort et al. (2010)

condition for 1 0
ˆ ˆV V . The simulations are run by computing the various thresholds and option

values for variations in 2 .

--- Table 1 about here ---

Figures 1a and 1b illustrate the profiles for the project value threshold and option value,

respectively, for each of the two strategies and for the two stages of the stepwise strategy, due to

variations in 2 . The profiles are evaluated by setting the power parameter 0 2  , the stage-1

and -2 investment costs 1 0.23K  and 2 0.8K  , respectively, and the stage-1 proportional part
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of the project value 0.3  . This means that the investment cost condition is met and the stage-1

proportional part  exceeds  1 1 2K K K as stipulated by Kort et al. (2010), although this is

subsequently relaxed. The figure, and subsequent figures, are only illustrated for a limited range,

in this case 21.4 2.3  , since the solution is infeasible at the upper limit, as explained shortly,

while for 2 1.4  , the stepwise project value threshold and option value increase in line with the

standard findings. Figure 1a reveals that for the lumpy strategy, the threshold level and option

coefficient and thereby the option value are constant for variations in 2 , respectively 0̂ 2.0V 

and 0 0.25A  . The condition 1 0
ˆ ˆ 2.0V V  is satisfied for 2 2.2328  , so 2 values exceeding

this upper limit are infeasible, and since 1 0
ˆ ˆV V is more restrictive than 1 2

ˆ ˆV V , these values are

consequently ignored. As expected, the stage-1 and stage-2 project value thresholds are

respectively increasing and decreasing for variations in 2 while their option values displayed in

Figure 1b are both decreasing. When 2 is set to equal 0 2.0  , 1A is slightly greater than 0A

indicating a marginal preference for the stepwise strategy. Indifference between the two

strategies occurs for 2 2.0161  , when 1̂ 1.5530V  and 2̂ 2.2677V  . Below this limit, the

stepwise strategy is preferred and increasingly so as 2 decreases while the lumpy strategy

dominates for 22.0161 2.2328  .

--- Figure 1 about here ---

3.1 Proportional Part Level

Kort et al. (2010) stipulate that the proportional part parameter  is constrained to be greater

than the stage-1 proportional investment cost  1 1 2K K K to ensure that 1 2
ˆ ˆV V and a feasible

solution results. In the current formulation, this constraint is not incorporated nor do we deduce

a similar condition, possibly owing to the absence of a closed-form solution. It is therefore

interesting to investigate the impact of proportional part parameter changes to determine whether

the magnitude of  is crucial for obtaining a feasible solution. This is achieved by maintaining
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the remaining parameters according to Table 1 but setting  at a level around

 1 1 2 0.2233K K K  ; specifically we allow  to take on the levels 0.24, 0.22 and 0.20. These

are illustrated, respectively, in Figures 2a-f.

---- Figures 2a-f and Table 2 about here ----

As Figures 2a-b show that the stepwise option values are decreasing functions of 2 while the

stage-1 and -2 project value thresholds are, respectively, increasing and decreasing functions, the

profiles adopt a similar shape to those presented in Figure 1. However, differences do exist in the

range of 2 values that make the stepwise strategy more attractive. For 0.24  , Figures 2a-b,

although a feasible solution is obtainable for 2 0 2.0   the lumpy strategy is more attractive

owing to a smaller proportion of the value realized by the stage-1 stepwise strategy compared

with that for Figure 1. In contrast, for both 0.22  and 0.20  , Figures 2c-f, there is no

feasible solution for the stepwise strategy when 2 0 2.0   because the condition 1 0 2
ˆ ˆ ˆV V V 

is violated. The values of 2 and the thresholds for varying  signifying indifference between

the stepwise and lumpy strategies are exhibited in Table 2. This shows that as the proportional

part realized by the stage-1 stepwise strategy declines, the value of 2 accordingly has to decline

to ensure that the stepwise strategy remains feasible and more attractive. Accompanying this

decline in 2 , there are increases in the stage-1 and -2 project value threshold levels. This is in

line with the standard finding of a negative relationship between the option value power

parameter and the threshold.

The interesting feature of Figure 2 is the occurrence of the stepwise strategy being the more

attractive of the two strategies despite a  value violating the condition  1 1 2K K K   . For a

particular  , the stepwise strategy is said to be the more attractive when 2 is less than some

upper limit, denoted by 2 . For 2 2   , when the lumpy and the stage-1 stepwise strategy
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options are equal,  the corresponding values of 1̂V and 2̂V are denoted by 1̂V


and 2̂V


, respectively.

To be at least attractive, the option value for the stepwise strategy has to be at least greater than

that for the lumpy strategy, so:

   1 1 0 0
ˆ ˆF V V F V V  

,

with the requirement that 1 0 2
ˆ ˆ ˆV V V  

for feasibility. Indifference between the stepwise and

lumpy strategies occurs at 2 2   . Figure 2 reveals that the stepwise strategy is both more

attractive yet feasible even when the condition  1 1 2K K K   is violated. This means that by

reformulating the model to allow the option power parameter to vary between stages owing to a

possible information set change, a broader representation is developed that is not confined to the

shortcomings of requiring  1 1 2K K K   .

These findings are of practical significance because for a studied context having different valued

stage option power parameters, the restriction on  may be inappropriate. The condition on 

implies that  2 1 21 K K K   , so the value realized per unit investment cost declines as we

progress from stage-1 to stage-2, which creates a comparative disincentive to start stage-2 having

completed stage-1. The concept of decreasing returns is acceptable and commonly applied in

assessing the optimal investment level in a world of limitless investment. Within the current

framework, the overall optimal investment level is not contestable, since it is fixed as 0K and

1 2K K for the lumpy and the stepwise strategies, respectively. Instead, the enquiry focuses on

determining the circumstances favouring a stepwise compared with a lumpy investment strategy

given fixed overall investment costs. For a divisible investment that is executable in two

consecutive stages, it is credible that the value realized per unit investment cost would be less at

stage-1 due to the need to finance upfront, essential and significant investments in R&D and

marketing before production revenues can flow. At stage-2, a need to continue investing in these

essential activities may persist, but because of the previous investments the level can be assumed

to be appreciably less. The restriction on  confines the model outcomes in a similar way as the
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condition 2 1  , while their relaxation opens up new possibilities by widening the model scope

and representation.

Figure 2 reveals that  influences the three indifference factors, 2 , 1̂V


and 2̂V


. Their numerical

values are reported in Table 2. A decreasing  level produces a decline in the proportional part

project value realized at stage-1 for the stepwise strategy, and if the stage-1 investment cost is

kept constant, then the realized value per unit investment cost also declines. Table 2 reveals that

a  decline leads to a fall in 2 , so a reduced  can only be justified provided that the

incremental information acquired during the between-stage actualization lowers the 2 value.

Further, accompanying the decline in  , there are expected increases in the levels of both 1̂V
 and

2̂V


. As the standard model predicts, any 2 decrease is accompanied by a rise in 2̂V . Also, a 

decline makes the stepwise strategy comparatively less attractive and inhibits its take-up, so 1̂V


rises as a consequence.

3.2 Stage Investment Cost Impact

The effect of stage-1 and -2 investment cost changes on the levels of the indifference factors.

The results are presented in Table 3. They record the various indifference levels evaluated from

variations in the investment cost levels, 1K and 2K , and in  . These results need to be evaluated

in conjunction with those in Table 2. The variations considered all comply with the condition

1 2 0K K K  .

The illustrations reveal that the effect of an investment cost increase, whether at stage-1 or -2, is

to produce a decrease in 2 , while a decrease leads to an increase in 2 . Whenever the stage-1

or -2 investment cost increases, the stepwise strategy is at a disadvantage compared to the lumpy



18

strategy so for the indifference between the two strategies to prevail, the stepwise strategy has to

be redeemed through a change in the between stage information set, which causes 2 to fall.

Accompanying the change in 2 , there are corresponding changes in the other two indifference

factors, 1̂V


and 2̂V


. A decrease (increase) in 2 due to an increase (decrease) in either stage

investment cost is accompanied by a 1̂V
 decrease (increase) and a 2̂V

 increase (decrease).

Although the negative association between 2 and 2̂V is well recognized, the positive

association between 2 and 1̂V arises from (11) and is due to the impact of the stage-2 option

value on the stage-2 project value threshold.

---- Table 3 about here ----

3.3 Impact of β1

The parameter 1 reflects the project’s underlying characteristics for the lumpy and stage-1

stepwise strategies. While variations in 2 due to an information set change between the two

stages identify the conditions favouring the stepwise strategy, we now consider the extent that

the indifference factor levels are influenced by a change in the value of 1 . The effect of 1

changes on the threshold levels and option coefficients with varying  levels are illustrated in

Figure 3. Table 4 reports the numerical impact on the three indifference factors. The base case

values specified in Table 1 are used in the evaluations except that 1 is increased to 2.5 and 3.0

while  takes the values 0.24 or 0.20. The two  values imply that the Kort et al. (2010)

restriction is just obeyed and violated, respectively.

The profiles illustrated in Figure 3 display for identical  levels a similar shape to those in

Figure 2. The lumpy option threshold is constant while those for the stage-1 and -2 stepwise
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strategy are increasing and decreasing with respect to 2 , respectively. Again, the option value

coefficient is constant for the lumpy strategy, but is decreasing for both stage-1 and -2 of the

stepwise strategy. Now, since for a constant  , a 1 change does not exert any influence over

the stage-2 stepwise threshold and its option value because of backwardation, 2̂V and 2A remain

unchanged for varying 1 but constant 2 . As expected, the 1 increase produces a fall in both

the project value threshold and option coefficient for the lumpy strategy. It also leads to a rise in

the 2 level signifying indifference between the two strategies, mainly because of the decrease

in the lumpy strategy option value. The 2 levels all lie below the corresponding 1 level either

because  violates the Kort et al. (2010) restriction or because the investment cost increment 

is too high. The 1 increase is similarly reflected in falls in the indifference factor levels, 1̂V


and

2̂V
 . Provided that the 2 level as specified by the project does not exceed the indifference level

2 , then the rise in the 1 level has the effect of lowering the indifference level 1̂V
 and

increasing the attractiveness of the stepwise strategy. Finally, a lower  level disfavours the

stepwise relative to the lumpy strategy, which is reflected in slightly higher 1̂V


and 2̂V


indifference levels.

---Figure 3 and Table 4 about here ---

3.4 Discussion

Allowing  to take on values violating the Kort et al. (2010) restriction and the parameters, 1

and 2 , not to be necessarily equal creates a more versatile formulation that is richer in scope

and interpretation. The model, however, rests on the assumption that following the exercise of

the stage-1 stepwise option, the project actualization does contribute to an enhanced information

set that produces a value of 2 different from 1 . Although a range of 2 levels conducive to

preferring the stepwise strategy was determined numerically, we did not address the plausibility

of obtaining a 2 value below its indifference level 2 . Our attention now turns to considering
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the range of values for the constituent elements that combine to make a particular 2 value

plausible. From (2), 2 depends on four elements, being the risk-free rate r , the dividend yield

associated with the project  , the underlying project volatility  and the probability  that the

investment option collapses to zero. We continue to defend a constant risk-free rate over the

option duration, 0̂t , 1̂t and 2̂t . This assumption is not only typical for many analytical real option

studies, but a risk-free rate change due to an information set change between 1̂t and 2̂t is also

unlikely. An additional assumption is an identical underlying context at 0̂t and 1̂t , so 0 1. 

Although dependence between the three parameters,  ,  and  , is acknowledge, each is

treated singly.

Amongst these parameters, volatility is considered to be the most important. Volatility, or the

uncertainty level underlying market conditions and the project’s future cash flow stream, is

associated with managerial flexibility, since as new information emerges and uncertainty is

resolved, decision makers have the potential to adjust their investment strategies and timings.

Since the lumpy and stage-1 stepwise strategies share identical information sets, the significant

emergence of information occurs during the project actualization following a stage-1 exercise.

Now, 2 must be less than an upper limit 2 for the stepwise strategy to be preferred. The

numerical simulations reveal that 2 is positively related to  but negatively to  , and only

exceeds 1 provided  is significantly greater than  1 1 2K K K . Even so, the preponderance

of viable 2 values lie below 1 . Since the option power parameter is negatively related to

volatility, obtaining 2 1  requires 2 1  . An increase in stage-2 volatility raises its option

value with a consequential increase in the stage-1 option and improved attractiveness for the

stepwise strategy.

The second parameter considered is  , the dividend yield associated with the project. For most

values of  and  , the stepwise compared with the lumpy strategy becomes increasingly

attractive and viable as 1 increasingly exceeds 2 . Since the option power parameter and  are
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positively related, obtaining 2 1  is only obtainable if the information gain from project

actualization following the stage-1 exercise leads to a downward revision of the dividend yield.

Finally, we consider the role of the probability  . Since the option power parameter is positively

related with  , the stage-2 probability has to be less than that for stage-1, 2 1  , for 2 1  .

The probability  is the chance that the option value collapses to zero before exercise owing to a

radical change in market preferences, the advent of disruptive technology or the arrival of

combative rivals having stronger first mover advantages. During the run-up period until the

exercise of the lumpy and stage-1 stepwise strategies, the decision maker is preparing to launch

his offering but aware of competing forces which if manifested would gain first-mover

advantages and completely erase his competitive advantage. In these circumstances, the

probability of a collapsing option value for the lumpy or the stage-1 stepwise strategy is

significant. However, as soon as the decision-maker’s option is exercised, and the project is

actualized, the threat from competing forces is allayed and the probability 2 of a stage-2 option

collapse recedes. Under this scenario, the credible presence of adverse competing forces as well

as their mitigation during actualization are sufficient to plausibly explain the decline in the

option failure probability between stage-1 and -2, which engenders a commensurate decrease in

2 relative to 1 and enhances the attractiveness of the stepwise strategy. Firms engage in

stepwise investment strategies in order to gain early first-mover advantages, moderate competing

forces and deter rival entry.

4 Conclusion

We provide a general model for comparing the lumpy and stepwise investment strategies, which

permits differential stage specific volatilities, drift rates and the possibility of project failure. The

contexts for the lumpy and stage-1 stepwise strategies are treated as identical. A strict condition

on the option power parameters is established that indicates a preference for the stepwise
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strategy. This condition is formulated on the stepwise strategy being feasible since it has a lower

project threshold, 1 0
ˆ ˆV V , with 0 2

ˆ ˆV V and viable since its stage-1 option value is greater. The

indifference point between the two strategies occurs for 2 2   and 1 1
ˆ ˆV V  . Then, the stage-1

option value is greater than that for the lumpy strategy provided    1 1 0 1
ˆ ˆF V V F V V    .

The values for the indifference factors, 2 and 1̂V


, vary according to the model parameters.

Numerical simulations reveal that 2 increases and 1̂V


decreases as a result of either  increases

or  decreases. As the stepwise strategy becomes increasingly more attractive due to a greater

proportion of the value realized at stage-1,  , or a lower investment cost differential,  , the

project value indifference threshold level declines, reflecting a relatively enhanced attractiveness.

An increase in 1 , which is common to both the lumpy and the stage-1stepwise strategies, also

produces a rise in 2 and a consequential fall in 1̂V
 along with the fall in 0̂V .

The preponderance of the indifference 2 solutions lies below the 1 value and any exceptions

only occur for significantly high  values. Because of this, the focus is identifying the

underlying parameter values conducive to achieving a sufficiently low 2 value that results in

the stepwise strategy being more greatly favoured. Achieving a 2 value below 1 requires

either a greater stage-2 volatility or a lower stage-2 failure probability. A volatility increase

between stages-1 and -2, with 2 1  , arises whenever the part project actualization following

the stage-1 exercise reveals greater market or country acceptability for the project offering than

was originally envisaged. Since stage-2 creates this additional value, the stepwise strategy

becomes more attractive. Similarly, a lower stage-2 failure probability implies that the

competitive or operating conditions during actualization becoming more favourable so learning

becomes a source of value creation.
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Our model could be extended to allow for inhibited or enhanced second stage project values, or

even reduced investment costs, due to a learning effect, in arriving at those optimal trade-offs.

Further extensions are to n stages, or allowing for time for investment completion, stochastic K,

and considering competition.
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Figure 1a
Project Value Thresholds for the Lumpy and Stepwise Models

For Variations in 2

Figure 1b
Option Value Coefficients for the Lumpy and Stepwise Models

for Variations in 2
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Variations in 2 have no effect on the lumpy strategy solution, and calculated values for the

project threshold and option coefficient are 0̂ 2.00V  and 0 0.25A  . Solution values for the

stepwise strategy given some representative 2 variations are presented in the following table.

2 1̂V 2̂V 1A 2A

1.40 0.97722 4.00000 0.35732 0.28717

1.50 1.06904 3.42857 0.32313 0.25203

1.60 1.15626 3.04762 0.29896 0.22418

1.70 1.24204 2.77551 0.28127 0.20152

1.80 1.32988 2.57143 0.26809 0.18268

1.90 1.42446 2.41270 0.25822 0.16676

2.00 1.53333 2.28571 0.25095 0.15313

2.10 1.67195 2.18182 0.24592 0.14131

2.20 1.88591 2.09524 0.24310 0.13098

It can be shown that for the stepwise strategy to be more attractive than the lumpy strategy, when

1 0A A , 2 2.01606  , with indifference occurring at the equality where 1̂ 1.55302V  and

2̂ 2.26767V  .



26

Figure 2a
Project Value Thresholds for the Lumpy and Stepwise Models

For Variations in 2 with 0.24 

Figure 2b
Option Value Coefficients for the Lumpy and Stepwise Models

For Variations in 2 with 0.24 
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Figure 2c
Project Value Thresholds for the Lumpy and Stepwise Models

For Variations in 2 with 0.22 

Figure 2d
Option Value Coefficients for the Lumpy and Stepwise Models

For Variations in 2 with 0.22 
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Figure 2e
Project Value Thresholds for the Lumpy and Stepwise Models

For Variations in 2 with 0.20 

Figure 2f
Option Value Coefficients for the Lumpy and Stepwise Models

For Variations in 2 with 0.20 
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Figure 3a
Project Value Thresholds for the Lumpy and Stepwise Models

For Variations in 2 with 0.24  and 1 2.5 

Figure 3b
Option Value Coefficients for the Lumpy and Stepwise Models

For Variations in 2 with 0.24  and 1 2.5 
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Figure 3c
Project Value Thresholds for the Lumpy and Stepwise Models

For Variations in 2 with 0.20  and 1 2.5 

Figure 3d
Option Value Coefficients for the Lumpy and Stepwise Models

For Variations in 2 with 0.20  and 1 2.5 
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Figure 3e
Project Value Thresholds for the Lumpy and Stepwise Models

For Variations in 2 with 0.24  and 1 3.0 

Figure 3f
Option Value Coefficients for the Lumpy and Stepwise Models

For Variations in 2 with 0.24  and 1 3.0 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

V_0

V_2

V_1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

A_0

A_2

A_1



32

Figure 3g
Project Value Thresholds for the Lumpy and Stepwise Models

For Variations in 2 with 0.20  and 1 3.0 

Figure 3h
Option Value Coefficients for the Lumpy and Stepwise Models

For Variations in 2 with 0.20  and 1 3.0 
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Table 1

Base Case Specification

Lumpy option power parameter
1 2.0

Stage-1 stepwise proportional project value  0.3

Stage-1 stepwise investment cost
1K 0.23

Stage-2 stepwise investment cost
2K 0.80

Lumpy investment cost
0K 1.00
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Table 2
The Effect of Changing  on the Indifference Factors

between the Lumpy and the Stepwise Strategy


2

1̂V


2̂V


0.20 1.7558 1.6165 2.3231
0.22 1.7961 1.6071 2.3140
0.24 1.8411 1.5964 2.3041
0.30 2.0161 1.5530 2.2677
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Table 3

The Effect of Changing  and Stage-1 and -2 Investment Costs
on the Indifference Factors between the Lumpy and the Stepwise Strategy

1K 2K 
2

1̂V


2̂V


0.21 0.80 0.20 1.8741 1.7191 2.1441

0.21 0.80 0.22 1.9217 1.7086 2.1384

0.25 0.80 0.22 1.7028 1.5695 2.4852

0.25 0.80 0.24 1.7410 1.5607 2.4732

0.23 0.78 0.22 1.8685 1.7327 2.1515

0.23 0.78 0.24 1.9169 1.7233 2.1456

0.23 0.82 0.20 1.7120 1.5501 2.4647

0.23 0.82 0.22 1.7501 1.5406 2.4529
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Table 4

Variations in the Indifference Factors Levels due to changes in 1 and 

1  2 0̂V 1̂V


2̂V


2.0 0.24 1.8411 2.0000 1.5964 2.3041

2.5 0.24 2.2395 1.6667 1.3723 1.9019

3.0 0.24 2.6278 1.5000 1.2628 1.6993

2.0 0.20 1.7505 2.0000 1.6028 2.3283

2.5 0.20 2.0837 1.6667 1.3932 1.9228

3.0 0.20 2.3852 1.5000 1.2841 1.7219
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