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Abstract

An important application in the real options literature has been to investments in
the oil sector. Two commonly applied “stylized facts” in such applications are tested
here. One is that the correlation of the returns on oil and the stock market is positive,
the other that it is invariant to changes in oil price volatility. Both are rejected in data
for 1993–2008 for crude oil and the S&P 500 stock market index. Based on real options
theory, consequences are pointed out. Higher volatility need not imply increased value
and postponed investment.
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1 Introduction

A major development in investment theory over the last three decades has been the theory
of real options. Energy investments have been a central application, with oil as perhaps
the most prominent example.1 A central result in option theory is that option values
increase with higher volatility of the price of the underlying asset. Whether this carries
over to real options is an unresolved issue (Davis, 2002).2

A widespread approach in the real options literature is to rely on the Capital Asset
Pricing Model (CAPM) to determine required expected rates of return. This would not
be necessary if forward or futures contracts were traded with sufficiently long maturities.
But many authors observe that these are not available, and rely instead on the CAPM.3

Because of the prominence of this approach, the present study investigates the empirical
basis for two types of assumptions ((i) and (ii) below) that are commonly applied.

The first assumption (i(a)) is that the correlation between returns on the underlying
asset and the stock market is invariant to changes in the volatility of the underlying asset.
Below we explain the consequences of the assumption for comparative statics. We show
that some authors have used an alternative version (i(b)), that the covariance is invariant
to such changes. Many authors pay little or no attention to their choice between these
alternatives (or other possible assumptions). We test assumption (i(a)) empirically, using
data for the period 1993–2008. We reject that the correlation is invariant.

The second assumption (ii) is that the correlation (and thus also the covariance) is
positive. We show that this is an important assumption for comparative statics when it
is combined with the invariance assumption (i(a)), but not with (i(b)). We show that
many authors have used the assumption without empirical basis, either implicitly, or
explicitly based on a priori motivation. This is surprising given the consensus in the
empirical literature that in recent decades, for the U.S. and European stock markets, the
correlation has been negative. We test the assumption and find non-positive correlations
during 1993–2008.

Real options have received interest lately in papers trying to explain empirical failures
of asset pricing models (Grullon et al., 2012; Da et al., 2012). Some authors assume that
real option values are increasing in volatility. Grullon et al. (2012, p. 1500) write that
“One of the main implications of real options theory is that a real option’s value is
increasing in the volatility of an underlying process”. This does not hold in general, as
shown by Davis (2002) and the present paper. Hence, care must be taken when real
option valuation is introduced in asset pricing models.

For most real options, the underlying asset is not an investment asset. Its price process
will exhibit what McDonald and Siegel (1984) call a rate-of-return shortfall, δ. This may
in some cases be observed in markets for forward or futures contracts. The questions is
then whether one should assume that it is invariant to changes in volatility. In other cases
the relevant contracts do not exist, in particular not for the long maturities needed. The

1Early applications to oil exploration and development were Tourinho (1979), Paddock et al. (1988),
Ekern (1988), Jacoby and Laughton (1992), and Pickles and Smith (1993). Oil is also used as example in
the real options textbook by Dixit and Pindyck (1994). Additional references are found in the overview
by Dias (1994) and more recent papers, e.g., Laughton (1998) and Smith and Thompson (2008).

2For financial options the result holds for both puts and calls. For real options, the question that
follows from theory is whether it holds for calls, cf. Berg et al. (2009, p. 9).

3This is found in, e.g., McDonald and Siegel (1986), Dixit and Pindyck (1994), Salahor (1998),
Laughton (1998), Sarkar (2000), Davis (2002), Lund (2005), Wong (2007), Gutiérrez (2007), Berg et al.
(2009), Kanniainen (2009), Guthrie (2009), and Brooks and Chance (2014).
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present study does not use data for futures contracts.4 Many authors then recommend
to estimate δ as

δ = µ− α. (1)

These two can be estimated separately, the required expected rate of return, µ, and an
actual expected rate of return, α. The question is then whether these are invariant to
changes in volatility. Typically it is assumed that α is unaffected, and the question is
then whether µ is.

This study clarifies the issues and suggests that empirical studies are needed. We
consider data for crude oil spot prices. In line with most of the literature, the price
process is assumed to be a geometric Brownian motion (GBM) with drift.

The existing literature is reviewed in section 2. Section 3 presents the model and dis-
cusses the use of comparative statics results for volatility. Section 4 presents an empirical
specification which corresponds to the prevailing practice of comparative statics. Then
the data are presented. Section 5 contains the empirical results. Section 6 concludes.

2 The previous literature

In their seminal paper on real options, McDonald and Siegel (1986) suggest to use the
CAPM5 to estimate required expected rates of return. Regarding invariance, they ac-
knowledge, in their footnote 14, that their results “ignore the possibility that changes in”
[volatilities] “affect the required rates of return”. Furthermore, “This assumption would
be valid if the uncertainty is uncorrelated with the market portfolio or if investors are
risk neutral.” They state that the opposite case “can lead to ambiguity in the compar-
ative static results.” In the following, the assumption of uncorrelated uncertainty will
be interpreted, not as the underlying asset being uncorrelated with the market portfolio,
but that the additional uncertainty, the increase to be analyzed, has this property.6

Dixit and Pindyck (1994, p. 148, p. 178) also introduce the CAPM,

µ = r + ϕσpρpm, (2)

where r is the discount rate for riskless cash flows, ρpm is the correlation between the rates
of return of the market portfolio, rm, and “the P asset” (an investment asset perfectly
correlated with the underlying asset), σp is the volatility of the underlying asset, and ϕ is
the market price of risk. They regard r and ϕ as exogenous in their analysis, which seems
reasonable. They state that “when the σ of the P asset increases, µ must increase.”7 This
is at odds with the assumption in McDonald and Siegel (1986) of an unchanged covariance,
which would imply that |ρpm| is reduced as a consequence of the higher volatility.

4Most real options relate to investment projects lasting for several years. Most researchers on futures
contracts refrain from using data for maturities longer than one year. According to Alquist and Kilian
(2010, p. 544), “the market remains illiquid at horizons beyond 1 year even in recent years. Trading
volumes fall sharply at longer maturities.” Guo and Kliesen (2005, footnote 5) also restrict their study
to maturities of 12 months and shorter. Schwartz (1997) uses proprietary data with up to nine years
maturity.

5The Capital Asset Pricing Model (Sharpe, 1964; Lintner, 1965; Mossin, 1966) was extended by
Merton (1973) to continuous time. The single-beta version of this extension is used in the real options
literature.

6This interpretation is different from the one in Davis (2002, p. 217).
7There is an implicit assumption that ρpm > 0, in contrast with the empirical results here and

elsewhere, see below.
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The presentation of the CAPM equation in (2) may have mislead many to assume that
ρpm is unchanged when σp changes, and, perhaps, vice versa. A simple example shows
that such a procedure is not necessarily correct. Consider what happens to cov(rm, rp)
if rp is multiplied by a noise factor. If a stochastic “multiplicative noise” variable X has
E(X) = 1, var(X) > 0, and is stochastically independent of (rm, rp), then

cov(rm, Xrp) = E(rmXrp)− E(rm)E(Xrp) = E(X) cov(rm, rp) = cov(rm, rp). (3)

This is one natural way to think about increased volatility of rp, and it does not increase
the covariance of rp with another variable rm. Instead, |ρpm| has been reduced. Whether
this is what actually happens, is an empirical question.

The question can be broken into several parts, depending on which of the CAPM
parameters are allowed to change. Equation (2) can be rewritten as

E(rp) ≡ µ = r + ϕσpρpm = r +
σpm
σ2
m

[E(rm)− r] , (4)

since ϕ is defined as [E(rm)− r]/σm, and ρpm = σpm/σpσm, where σpm is the covariance
between rp and rm. The CAPM beta for the return rp is the fraction in the final expression.
Even when it is maintained that α in (1) is invariant to changes in σp, one can ask whether
ρpm is invariant, whether ρpmσp is invariant, and the same question for ρpmσpσm (which
is the covariance), ϕσpρpm, and even r + ϕσpρpm. These successive extensions allow for
the possibility that several parameters change simultaneously with a change in volatility.

Extensions to ϕσpρpm, and in particular to r + ϕσpρpm, would be beyond the com-
parative statics analysis which has motivated this study. The risk-free interest rate is
a separate argument in any formula for real option values. A comparative-statics anal-
ysis of a change in volatility assumes that r is constant, implying that an extension to
r+ϕσpρpm would include more possible variation than allowed for by the original purpose
of the analysis. Something similar can be said about ϕ ≡ [E(rm)− r]/σm, although it is
conceivable that r is constant while E(rm)− r changes. Due to these considerations, the
question to be analyzed here is whether the correlation is invariant.

Bradley (1998, p. 59) states explicitly that “we vary the level of price uncertainty, but
keep the forward prices the same across models. This is done so that we may examine
the direct effects of uncertainty when cash-flow models are nonlinear.” The assumption
is in line with McDonald and Siegel (1986), and corresponds to the constant covariance
assumption when the CAPM is applied. On the other hand, in the same special issue,
Laughton (1998), using the CAPM, does not seem to keep the forward price constant
when σ is varied, see his equation (A-1).

Davis (2002) has an extensive non-empirical discussion of the problem, with a general
formulation indicating that both δ, µ, and α may be functions of σp. After introducing
the CAPM equation identical to (2), Davis (2002) treats the correlation as a constant.
This is also found in Berg et al. (2009) and Kanniainen (2009). All these studies point out
the implication that increased volatility now affects the option value both directly and
indirectly via the rate-of-return shortfall. For a call option these effects go in opposite
directions when ρpm > 0. The latter effect may outweigh the former, so that the total
effect is negative.8

8These authors assume that the underlying asset follows a GBM. McDonald and Siegel (1986) has a
jump process as an alternative, and Dixit and Pindyck (1994) discuss several alternative processes, while
maintaining the GBM as the main assumption. Bradley (1998) has two alternatives price processes, one
of which is mean reverting. Other discussions on the type of process are found in Lund (1993), Laughton
and Jacoby (1993), Baker et al. (1998), Sarkar (2003), Tourinho (2013).
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It is interesting to note that there is a related literature that asks a related question: In
real option models, what is the effect of increased volatility on investment?9 The original
real options literature predicted a decreasing relationship, but there are opposing effects.
Even if the trigger for investment is increased, the probability of reaching it may also be
increased, so that the overall effect is ambiguous. Sarkar (2000), Cappuccio and Moretto
(2001), Lund (2005), and Wong (2007) study this under various sets of assumptions.
Sarkar (2003) extends the analysis to a mean-reverting process. All five papers rely on
the CAPM for valuation, at least as one possible alternative. While Sarkar and Wong
keep ρpm constant when σp is increased, the other authors prefer to keep δ constant.

The two assumptions can be seen as opposite extremes. It may be more reasonable
to invoke an intermediate assumption. Cappuccio and Moretto (2001, p. 11) state that
“Which of these viewpoints is more plausible is, in general, an empirical matter . . . .” To
our knowledge the existing real options literature has no references to empirical studies
of the possible link between changes in volatility and changes in covariance measures of
risk. This paper is a first attempt to link the analysis to such empirics.

Whether the correlation (and covariance) is positive or negative is a separate issue,
which plays a somewhat different role under different invariance assumptions, see sec-
tion 3. Of course, the empirical answer may differ between different underlying assets
and between different stock markets.10 For crude oil the results in section 5 confirm what
has been reported previously in the literature, broadly speaking that ρpm ≤ 0. Deaves
and Krinsky (1992, table 3) find negative, but insignificant correlations with the U.S.
stock market in data for crude oil futures 1983–1990. Schwartz (1997) finds negative
or insignificant values (for the risk premium, λ in his notation) for oil in his one-factor
model. Cifarelli and Paladino (2009, p. 364) summarize that “A number of studies, based
on different data and estimation procedures, find a negative financial linkage between oil
and stock prices i.e. a large negative covariance risk between oil and a widely diversi-
fied portfolio of assets.” Another broad overview is given by Degiannakis et al. (2014),
confirming the same pattern.

Our purpose is not to investigate whether a causal effect exists between changes in
volatility and changes in correlation. Research on causal effects are found in Miller
and Ratti (2009) and Kilian and Park (2009), who distinguish between different periods
and regimes, and find that the correlation varies between negative values and values
that are close to zero. Filis et al. (2011) investigate contemporaneous and lagged time
varying correlations for oil importing and oil exporting countries. The results confirm that
negative correlations are the typical finding for the U.S., although the contemporaneous
correlations are positive in the year 2000. For another asset in a resource exporting
country, Slade and Thille (1997, p. 634) find that “the rate of copper price appreciation
is virtually uncorrelated with the return on the Toronto Stock Exchange”.

A recent empirical study by Mohn and Misund (2009) shows that investment in a
worldwide sample of oil companies reacted both to σp and to the volatility of the stock
market return, σm. In the short run the reaction to higher volatilities was negative, i.e.,
reduced investment. In the long run, the estimated reaction was positive for σp and

9With a theoretical approach, this refers to the effect on the optimal investment strategy. It has
different interpretations, cf. Lund (2005); the effect on the price at which investment is (optimally)
triggered, or, during some defined future period, the expected (optimal) investment or the probability
that some real call option is (optimally) exercised.

10For a natural resource, the correlation may be different between an importing country’s stock market
and that of an exporting country, where resource exporting firms will be more prominent.
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negative for σm. The first of these was larger in absolute value, so that a combined
increase in both volatilities would lead to increased investment in the long run. The
authors suggest the existence of compound options to explain this effect, but give no
exact theoretical explanation. They give no detailed evidence to distinguish this from
other possible explanations, such as that in Sarkar (2000). The separate effect of σm is
not easily incorporated in the theory of real options.

Most of the non-empirical studies cited above neglect the issue of a negative corre-
lation, even though many mention oil as an important application. Some make implicit
assumptions about a positive correlation. Dixit and Pindyck (1994, p. 155) state that
“each unit increase in σ requires an increase in δ of ϕρxm units,” without mentioning
that the increase could be negative. Sarkar (2000, p. 222) states that “a higher level of
uncertainty will increase the critical trigger level” under the same implicit assumption.
Pindyck (2001, p. 18) states that “For most industrial commodities such as crude oil and
oil products, we would expect the spot price to co-vary positively with the overall econ-
omy, because strong economic growth creates greater demand, and hence higher prices,
for these commodities.” On the other hand, Gutiérrez (2007) and Kanniainen (2009)
include the possibility of ρ < 0 in their analyses, but they do not suggest that it may be a
prominent case for an important underlying asset like oil. Davis (2002, p. 220) explicitly
states the condition that λρ (which corresponds to ϕρpm in the notation of this paper)
is positive, and pays no attention to the opposite case. Wong (2007, p. 2159) considers
ρ < 0, but concentrates on “the more plausible case that ρ > 0.” With reference to the
CAPM, Hart and Spiro (2011, p. 7837) assume a substantial positive risk premium for
crude oil, implicitly assuming a positive correlation.

For oil in recent decades there is thus a clear dissonance between results of empirical
studies and assumptions in the theoretical literature, stronger for some authors, not so
strong for others. None of the theorists have adopted ρpm < 0 as their main case. In
combination with equation (2), the assumptions of an invariant and negative ρpm would
imply a decreased µ when σp is increased. While consistent with the CAPM, such an
assumption may be counter-intuitive for many, and is not found in the literature, to our
knowledge.

3 The model and the unresolved issue(s)

This section shows that there are two versions of the real options model, one in which
the underlying asset is a cash flow stream. In that version, the opposing effect of an
increased δ is stronger, provided that ρpm > 0. This strengthens the need to reconsider
the traditional view on the value effect of volatility. There is no new theory in this section,
just a clarification of the issues.

The model is the real options model of McDonald and Siegel (1986), which is consid-
ered by most of the non-empirical studies cited above. A firm has the option to make an
investment with cost I which creates an asset with value V . For simplicity I is assumed
to be fixed,11 while V is a GBM with drift,

dVt = αVtdt+ σVtdZt, (5)

where t is time, σ is a constant volatility, and dZt is the increment of a standard Wiener
process. What is denoted σ in this general formulation corresponds to σp in the previous

11McDonald and Siegel (1986) also consider the case where both V and I are GBMs.
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section.
The optimal time for the firm to invest is the first time Vt reaches a trigger level V ∗

from below. Defining the constant γ as

γ =
1

2
− r − δ

σ2
+

√(
1

2
− r − δ

σ2

)2

+
2r

σ2
, (6)

the optimal V ∗ is

V ∗ =
γ

γ − 1
I, (7)

cf. equations (14) and (24) in Dixit and Pindyck (1994, pp. 142, 152). They also show
that when Vt is below the trigger, the value of the option is

F (Vt) = AV γ
t , (8)

with the constant A defined by

A =
V ∗ − I

(V ∗)γ
= I1−γ(γ − 1)γ−1γ−γ. (9)

The model describes a perpetual American call option on an asset with a rate-of-
return shortfall, δ. For a financial option, the underlying asset could be a stock with a
continuous dividend yield rate δ, in case the option is not payout protected.

For a real option, the underlying asset may be a completed plant, mine or oil field.
In many cases market values for such assets are not observable. In a subsequent chapter,
Dixit and Pindyck (1994, pp. 177–186) interpret the asset as the present value of a
perpetual revenue stream, the sales value of production, first considered with no operating
cost. The observable price variable is now the output price, Pt, which is assumed to be a
GBM. For simplicity output is assumed to be a constant unit flow, so that the value of
the completed asset is12

Vt =
Pt

δ
. (10)

With this in mind, the trigger level of Pt for investment is the same,

P ∗ =
γ

γ − 1
δI. (11)

The option values before investment are also the same. The difference that occurs when
Pt is assumed to be observable instead of Vt, is in the comparative-statics results on effects
of changes in σ (or δ). In one case, Vt is held constant, in the other, Pt. The partial
derivatives of the two functions

F (Vt, I, r, σ, δ) = AV γ
t =

[
I1−γ(γ − 1)γ−1γ−γ

]
V γ
t (12)

and

F0(Pt, I, r, σ, δ) = A

(
Pt

δ

)γ

=
[
I1−γ(γ − 1)γ−1γ−γ

]
P γ
t δ

−γ (13)

are not the same, even though the functions yield the same value when (10) holds.

12As shown in Dixit and Pindyck (1994, p. 182).

7



Davis (2002, p. 220) points out that “the derivative ∂F/∂σ is complex and difficult
to sign”.13 Both he and Dixit and Pindyck (1994) thus resort to numerical examples
in order to illustrate the partial effects. There is a caveat: One cannot be sure to have
covered all parameter combinations that may be of interest.

The examples show that ∂F/∂σ > 0 and that ∂F/∂δ < 0 (Dixit and Pindyck, 1994,
pp. 154, 156). In order to go further into the effects, it is helpful to write out the total
derivatives. In what follows, the definitions of the ten partial derivatives of F and F0 are
standard and the same throughout. The total derivatives will depend on what functions
and arguments are used in each case.

The total effect of σ on F when Vt is assumed constant is

dF

dσ

∣∣∣∣
Vt const.

=
∂F

∂σ
+
∂F

∂δ

dδ

dσ
=
∂F

∂σ
+
∂F

∂δ
ϕρpm, (14)

where the final expression is taken from (1) and (2), with α, ϕ, and ρpm assumed to
be constant. Since ∂F/∂δ is found to be negative (see above), this total effect may be
ambiguous. However, if the covariance is constant because the added risk is independent
of the market portfolio, then ρpm is not constant, and dδ/dσ is zero. Then the total effect
of σ on F only consists of the partial effect, ∂F/∂σ, which is positive.

When, alternatively, Pt is assumed constant, the total effect of σ on F0 is

dF0

dσ

∣∣∣∣
Pt const.

=
∂F0

∂σ
+
∂F0

∂δ

dδ

dσ
=
∂F0

∂σ
+
∂F0

∂δ
ϕρpm. (15)

Again, the final expression depends on the fixed α, ϕ, and ρpm. The difference from (14)
is that ∂F0/∂δ ̸= ∂F/∂δ. This can be seen from introducing Pt/δ as argument instead of
Vt in the F function and finding the total derivative for that case:

dF

dσ

∣∣∣∣
Pt const.

=
∂F

∂σ
+

[
∂F

∂δ
+
∂F

∂Vt

d(Pt/δ)

dδ

]
dδ

dσ

=
∂F

∂σ
+

[
∂F

∂δ
+
∂F

∂Vt

(
−Pt

δ2

)]
ϕρpm. (16)

The expression in square brackets is negative and equal to ∂F0/∂δ (when (10) holds),
since both are equal to

V γ
t

[
∂A

∂δ
+ A

(
∂γ

∂δ
ln(Vt)−

γ

δ

)]
.

Accordingly, the total derivatives in (15) and (16) are identical. The new term, compared
to (14), is clearly negative when dδ/dσ > 0.

Summing up the conclusions to this theoretical discussion:

• There is a direct, positive effect of volatility, σ, on the value of the option before it
is exercised.

• If the rate-of-return shortfall, δ, is invariant to changes in volatility, no counteracting
effect to the positive effect has been identified.

• If the rate-of-return shortfall is decreasing in volatility, typically because ρpm < 0
and invariant, then the effect of increased σ would be increases in V or P , reinforcing
the direct, positive effect (Kanniainen, 2009, Figs. 1 and 2).

13“Complex” is used in its everyday meaning, not in the mathematical meaning.
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• If the rate-of-return shortfall is increasing in volatility, one or two counteracting
effects have been identified:

– If Vt is invariant to changes in volatility, there is one counteracting effect.

– If Pt is invariant to changes in volatility, there are two counteracting effects.

The first, direct, positive effect is well known and easily explained. The owner of
the option may take advantage of higher outcomes of the underlying asset price, but is
protected against lower outcomes. More dispersion is then better. The second of the
two counteracting effects is also easily explained. The call option value is increasing in
the value of the underlying asset. When this asset value is Pt/δ, and δ is increasing in
volatility, there is clearly a counteracting effect.

The first counteracting effect, which appears even when Vt is invariant, is perhaps less
obvious. The following intuition is taken from European options with finite maturity, but
seems to carry over: The underlying asset with value Vt has a rate-of-return shortfall. A
replicating portfolio for the option will not include the underlying asset itself, but “the P
asset” (see above), a prepaid forward contract on Vτ (at maturity, τ). Apart from this,
the replicating portfolio has the same composition. Clearly, if δ is increased, the value
of a prepaid forward on Vτ is decreased, and so is the value of the portfolio and thus the
option.

4 Empirical specification and data

While the theoretical literature on real options discusses comparative statics results,
there is less discussion of the interpretation and relevance of these results. The effect
of a higher or lower volatility on the endogenous variables of a real options model will
have practical relevance in various circumstances. One is that volatility could change
over time for real options on a specific type of assets, such as oil fields. Another could
be a comparison between different assets with different volatilities, but this is hardly the
typical application, and will not be discussed further.

If a volatility changes over time, this is at odds with the theory as specified here.
Valuation and optimal strategy have been derived under the assumption of a constant
volatility. If there is the possibility of a changing volatility, this should have been present
in the model to begin with. The stochastic process for the price of the underlying as-
set should have been specified differently, and the value and strategy would have been
influenced by this.14

In the most common interpretation, changes in volatility over time, the comparative
statics results are thus not useful from a purist point of view. A more pragmatic view is
chosen because models with constant volatility are easy to solve. The analytical solutions
have attracted substantial interest, both from theorists and practitioners, and this is also
likely to be the case in the foreseeable future. Thus it is interesting to improve the
practical relevance of the comparative statics results of such models, the purpose of the
present study.

For an empirical investigation, it is necessary to decide what kind of deviation from
a constant volatility one will estimate. One will also have to choose, more generally,

14Ting et al. (2013) characterize real options with stochastic volatility. Deterministic volatility is less
realistic, but the models are so much simpler that they are likely to be used in most applications for
many years to come. This motivates the present study.
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Table 1: Structural breaks in volatility

Time period Standard deviation
July 1, 1993 – August 29, 1994 0.0191

August 30, 1994 – January 8, 1996 0.0142
January 9, 1996 – June 13, 2005 0.0259
June 14, 2005 – June 30, 2008 0.0191

Reproduced from Ewing and Malik (2010).

whether to stick to the specification of the stochastic process that is used in the theory,
even if this process can be rejected empirically.

The application here looks at price data for oil, perhaps the most studied underlying
asset in applications of real options theory. There will not be an assumption that the
volatility changes continuously over time, nor that there are probabilities for switching
between various regimes. Instead the volatility changes will be taken from an existing
study of structural breaks in volatility. A structural break is an operational concept
that seems close to the theoretical notion of an unanticipated change, with no specified
probability for any particular magnitude or direction of that change. Under such a process
with breaks, it may be imagined that the market’s valuation and the decision maker’s
strategy may as well rely on models with constant volatility. The deviation from a purist
view is as little as possible.

The breaks are found in the study by Ewing and Malik (2010) of crude oil spot prices
1993–2008. Based on their method, the data lead to an identification of three breaks
in the volatility, i.e., in the standard deviation of relative changes (“returns”) in the oil
price. Apart from dummy variables that allow for these breaks, the oil price returns are
assumed to follow a GARCH process, which is different from the GBM used in most
option pricing models.15 The pragmatic defense of this procedure is that the breaks are
taken to exist irrespective of the detailed assumptions made about the stochastic process.
Unfortunately, this is not quite true: A subsequent study by Vivian and Wohar (2012)
finds fewer breaks in volatility when they allow other parameters of the GARCH model
to have breaks as well. Nevertheless, the break points found by Ewing and Malik (2010)
will be used here. After all, if many parameters change, this does not correspond well
with the theoretical notion of comparative statics, changing σp while holding everything
else constant.

The four periods (i = 1, . . . , 4) delimited by the three breaks are shown in Table 1,
including the volatility estimates. The table is reproduced from Table 3 in Ewing and
Malik (2010). Fifteen years of daily data are used, and the standard deviation is based
on one day as time unit. These are working days, about 250 per year.

The next section is based on oil spot prices and the Standard and Poor’s 500 index
for the stock market. The question is: Is ρpm in period i significantly different from ρpm
in period i−1 (for i = 2, 3, 4)? If the answer is yes, one will have to reject the hypothesis
that ρpm is invariant to changes in volatility. The information here concerns the method
in which the CAPM is used for estimating µ separately. The answers may be different
for different breaks.

Spot prices for crude oil are daily data for West Texas Intermediate (WTI), obtained

15There also exist GARCH real option models, starting with Duan (1995).
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Table 2: Estimates of parameters of the CAPM real options model

Regime Years σ̂p ρ̂pm ρ̂pmσ̂p ρ̂pmσ̂mσ̂p
1 1993− 94 0.0191 −0.17875 −3.4141× 10−3 −1.860 4× 10−5

2 1994− 96 0.0142 −0.030461 −4.3255× 10−4 −2. 333 2× 10−6

3 1996− 05 0.0259 −0.021816 −5.6503× 10−4 −6.678 7× 10−6

4 2005− 08 0.0191 −0.017739 −3.3881× 10−4 −3. 077 9× 10−6

Source: Own estimates, except σ̂p taken from Ewing and Malik (2010).

from U.S. Energy Information Administration (2012). This is identical to the data in
Ewing and Malik (2010), and the same time period was chosen, July 1993–June 2008.
Data for the return on a market portfolio was taken from the total return index of
Standard and Poor’s 500 from the New York Stock Exchange. These data were obtained
from the company S&P Dow Jones Indices.

5 Empirical results

Within each of the four periods defined by the breaks in Table 1, three variables of interest
for the application of the CAPM have been estimated. The results are given in Table 2.

A plot of the point estimates of the values of σp, ρpm and the covariance (scaled up
by a factor of 104) is shown in Figure 1.

The first notable feature of the estimates is the fact that correlations and covariances
are consistently negative throughout the fifteen years. This means that the required
expected return according to the CAPM has been less than the risk free interest rate.
To get an impression of the magnitudes, consider the product of the point estimates,
ρ̂pmσ̂p. This should be multiplied by

√
250 to compare with yearly interest rates, under

the assumption of a GBM.16 With the value of ϕ = 0.4, suggested by Dixit and Pindyck
(1994, p. 148), the reduction in annualized µ below the risk free interest rate, cf. (2),
would be 0.0217 in the first subperiod, i.e., 217 basis points. It would practically vanish
in the second, third and fourth subperiods, fluctuating between 22 and 36 basis points.

For the solutions of the real options model to be valid, δ > 0 is a necessary requirement.
Whether this was the case during 1993–2008 is beyond the scope of this study, since we
do not provide any ex ante estimate of α. More generally, Roberts (2000) suggests
that negative or low correlation is consistent with the flat or downward trend in natural
resource prices. δ can be positive because the ex ante expected price growth, α, may
have been small.

The estimated correlations and covariances, as well as ρpmσp, do not appear to be
invariant to changes in volatility. In particular, there is a sharp increase in both cor-
relation and covariance at the first break point. At the second and third break point,
the covariance changes much more in relative terms than the correlation. For the period
after the first break point, i.e., during September 1994 – June 2008, one could draw the
preliminary conclusion that the correlation is close to zero and does not change much,

16Our data record about 250 working days per year.
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Figure 1: Values of σ̂p, ρ̂pm and 104 × σ̂pm in the four subperiods
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in particular not at the third break point in June 2005. However, a statistical analysis
is necessary to determine whether invariance can be rejected or not. At the first break
point, the preliminary conclusion is quite clearly that none of the three parameters are
constant. In the first subperiod, the correlation is negative with a substantial absolute
value.

Another interesting observation from Table 2 is that the direction of changes in |ρpm|
is not always opposite of the direction of changes in σp. This contradicts the simple
intuition from the example in equation (3).

We must assume a probability distribution for the market return and the oil return.
We (tentatively) assume identical distributions within volatility regimes, so that the rates
of return ∆ ln(SPt) and ∆ ln(OILt) are jointly normal with mean αi and covariance
matrix:

Ωi =

(
σ2
im σipm

σipm σ2
ip

)
,

where subscript i “runs over” regimes, and

ρipm =
σipm
σimσip

.

The first hypothesis we want to test is invariance of the correlation coefficient with respect
to the structural break in market volatility between regime 1 and 2, against the alternative
of a structural break also in the correlation coefficient, formally H0: ρ1pm = ρ2pm, against
H1: ρ1pm ̸= ρ2pm.

Since there are three breaks in volatility, we also want to test H0: ρ2pm = ρ3pm against
H1: ρ2pm ̸= ρ3pm, and H0: ρ3pm = ρ4pm against H1: ρ3pm ̸= ρ4pm.

12



Table 3: Test of invariance of correlation. Daily data
Regime Dates σ̂p ρ̂pm ψT [p value]

1 1993.07.01− 1994.08.29 0.0191 −0.17875
2 1994.08.30− 1996.01.08 0.0142 −0.030461 −21.907[0.0000]
3 1996.01.09− 2005.06.13 0.0259 −0.021816 −2.7410[0.0062]
4 2005.06.14− 2008.06.30 0.0191 −0.017739 −2.0756[0.0380]

In our case, although joint normality is a useful reference, there are signs of departures
from normality as well, as the Appendix shows. On the other hand the number of
observations is large for each sub-sample. Together, this makes it attractive to use an
asymptotic test that does not depend on the exact normality of observations. Such a
test is suggested in e.g., Omelka and Pauly (2012) . It is a studentized asymptotic test
that does not require that ∆ ln(SPt) and ∆ ln(OILt) are jointly normal. The statistic is
calculated as:

ψT =

√
T1T2
T

(ρ̂1pm − ρ̂2pm)√
v̂2Z

, (17)

where we use regime 1 and 2 for concreteness, and where T = T1 + T2. Under the null
hypothesis, ρ1pm = ρ2pm, ψT is t-distributed with T degrees of freedom. The variance
term υ̂2 is

υ̂2 =
σ̂2
Z1

T1
+
σ̂2
Z2

T2
. (18)

It is an estimate of the asymptotic variance of the difference
√

T1T2

T
(ρ̂1pm − ρ̂2pm). σ̂

2
Zi

(i = 1, 2) are the empirical variances,

σ̂2
Zi

=
1

T1 − 1

Ti∑
t=1

(Zt − Z̄i)
2, i = 1, 2, (19)

where Z̄i =
1
Ti

∑Ti

t=1 Zit (i = 1, 2) and, for t = 1, . . . , T1, . . . , T1 + T2,

Zt = SmtSpt −
1

2

(
T1

(T1 + T2)
ρ̂1pm +

T2
(T1 + T2)

ρ̂2pm

)[
S2
mt + S2

pt

]
. (20)

Smt and Spt are standardized variables for ∆ ln(SPt) and ∆ ln(OILt) that are constructed
by subtracting the means and dividing by the empirical standard deviations of the pooled
sample. Omelka and Pauly also consider small sample version of the test statistic, but
they conclude that the asymptotic test in (17) is the best option for samples larger than
100. With daily data, our shortest sample has 292 observations.17

Table 3 gives the ψT scores and the p values. Details of the calculations are shown in
the appendix. At a 5 percent significant level, the null hypothesis of invariance is rejected
for all three break points.

To check the results for robustness, we also did the same empirical investigation and
test on weekly data. These were constructed from daily data by two alternative methods,

17It might be noted that in the simulations provided by Omelka and Pauly, the size distortions of
the asymtotic test are never more that 1–2 percentage points, even for small sample sizes (< 40). This
suggests that p values of 0.025 and lower are likely to be significant at the 5 % level when the test is
applied to our weekly and monthly data sets.
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Table 4: Comparing annualized estimates from weekly and daily data
Daily data Weekly data

Regime Years
√
250ρ̂pmσ̂p 0.4

√
250ρ̂pmσ̂p

√
52ρ̂pmσ̂p 0.4

√
52ρ̂pmσ̂p

1 1993− 94 −0.0540 −0.0215 0.0290 0.0116
2 1994− 96 −0.0068 −0.0027 −0.0057 −0.0023
3 1996− 05 −0.0089 −0.0036 −0.0099 −0.0040
4 2005− 08 −0.0054 −0.0021 −0.0225 −0.0090

averaging the level data for each calendar week, or using only Wednesday data. Both
methods produced similar results.

The main results are that correlations are again negative and vary across the subperi-
ods, but with one exception: In weekly data the correlation with the stock market returns
is positive for the first period. This is ρ̂pm = 0.0610 based on averages, and ρ̂pm = 0.0986
based on Wednesday data, as opposed to ρ̂pm = −0.1788 from daily data. This raises
doubts about the assumption of the returns being correlated GBM’s. If they had been,
the weekly returns for Wednesday data would also be correlated GBM’s with the same
correlations.

For subperiods 2–4, however, the results are similar. The point estimates from
Wednesday data are summarized in table 4, with annualized estimates to allow com-
parisons.

Again, the value ϕ = 0.4 is used, and the columns that include this factor show
the CAPM risk premium in the annual required expected returns, annualized ϕρpmσp.
For the latter three subperiods these are small in absolute values, also when computed
from weekly data. For the second and third period, the annualized estimates for the two
alternative frequencies are very similar. For the last period, 2005–08, there is again a
divergence between estimates based on daily and weekly data. But in this case, both are
significantly negative.

A priori one would expect negative correlations in periods when supply variations
dominate, but positive correlations when demand variations dominate. Much more detail
on this is found in Kilian and Park (2009) and Filis et al. (2011). Even though positive
correlations were rejected in daily data for all four subperiods, we have done a further
test of robustness of this result by considering correlations for rolling windows of shorter
lengths, 80 working days.18 Among the 3677 windows, 57.8 percent have negative point
estimates for ρpm, while the remaining 42.2 percent have positive point estimates. For
most windows (89 percent of them, to be precise), 95 percent confidence intervals for
ρ̂pm include both positive and negative values. But 9.4 percent of the windows have only
negative values in the confidence interval, while 1.6 percent of the windows have only
positive values. This suggests that nonpositivity of correlations in daily data is a fairly
robust result for these 15 years. An interpretation is that if there were periods with high
demand fluctuations, these periods typically also had high supply fluctuations, so that
the overall correlation was almost never significantly positive.

Finally, to get an idea of the magnitudes of the estimated changes, consider the
numerical effects on call option values and triggers. While a comparative-statics analysis
typically looks at changes in one variable at a time, there will now be changes in two

18With data for 3757 working days, there are 3757−80 = 3677 such partly-overlapping windows. Some
windows include data from two adjacent subperiods among the four original subperiods.
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Table 5: Example of at-the-money call option values and triggers

Regime σp ρpm δ V ∗ F (Vt) P ∗ F0(Pt)
1 0.3020 -0.1788 0.0084 10.7389 0.7107 0.0903 1.8481
2 0.2245 -0.0305 0.0273 2.8826 0.3722 0.0786 0.2316
3 0.4095 -0.0218 0.0264 5.4067 0.5557 0.1429 0.3948
4 0.3020 -0.0177 0.0279 3.6830 0.4481 0.1026 0.2843

All data are converted to annual rates. Source: Own calculations.

variables simultaneously, σp and ρpm. For these two, use the point estimates from daily
data during each of the four subperiods defined in Table 1, but keep the other variables
fixed. Equations (1) and (2) will be applied to compute the change in δ that follows from
a simultaneous change in σp and ρpm.

In the first model mentioned in section 3, with Vt as observable, the call option value is
defined by (12). The variables Vt, I, r, α, and ϕ are held fixed. The trigger value for V , V ∗,
is defined by (7) and (6). Numbers similar to those in Dixit and Pindyck (1994, p. 153f)
will be used as an example. With annual rates, the numbers are r = 0.04, ϕ = 0.4, and
I = 1 is the required investment. The call option considered here has Vt = I, i.e., it is “at
the money.” Moreover, α is chosen to be 0.01, so that δ is always positive, although very
small when systematic risk is negative. The last term in (2), the product of the three
factors ϕσpρpm, will have the negative numerical annualized values found in the fourth
column of table 4. This leads to a value of δ from (1). The annualized volatility numbers
are

√
250 times the estimates in table 3. The resulting values are given in table 5, all

columns except the last two.
The last two columns are computed from the second model, with Pt fixed instead of

Vt. Since δ varies between 0.0084 and 0.0279, the fixed Pt value is chosen to correspond
to an approximate average of these, δ = 0.02, together with the previously fixed Vt = 1.
That is, Pt is now fixed at 0.02. The trigger is computed as P ∗ = δV ∗ (but only one
of the two triggers is relevant for a particular decision). This results in the call option
values shown in the last column. As mentioned above, the changes in δ result in strong
variations in call option values when the underlying asset is a cash flow stream and Pt is
assumed to be fixed.

For all three breaks and both models, the triggers and the call option values do indeed
move in the same directions as the changes in volatility. Clearly, this is related to the
corresponding changes in δ. For all three breaks, δ moves in the opposite direction of
σp. As noted in the summing-up in section 3, this would have followed from a constant,
negative ρpm, but here it coincides with a changing, negative ρpm. But, as noted the same
place, the negative correlation means that there is no counteracting effect to the positive
effect of volatility on option value. In these data, higher volatility coincides with lower
systematic risk, thus a lower rate-of-return shortfall. One could say that this rescues
the standard assumption, that higher volatility results in, or at least coincides with,
higher triggers and option values. The results should nevertheless warn researchers to be
more careful about assumptions underlying comparative statics. In particular, the robust
negative correlations contradict what is often assumed in the real options literature.
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6 Conclusion

This paper has tested two important assumptions underlying a number of studies of real
options, that the correlation of the returns on oil and the stock market is positive and
invariant to changes in oil price volatility. The theoretical discussion has shown the role
of the assumptions when the CAPM is used to estimate the rate-of-return shortfall.

During the 15-year period July 1993 – June 2008, the study by Ewing and Malik
(2010) has found three breaks in volatility, i.e., four subperiods with different levels of
the volatility of the change in the logarithm of the oil price. We interpret these breaks
as the empirical counterparts of the “change in volatility” which is a topic of theoretical
comparative statics results. Accordingly, the question about invariance has been, is the
correlation invariant to such changes? This is clearly rejected in the tests.

Consistently with previous empirical studies, this study finds that the correlation has
been negative in daily data for each of the four subperiods. This indicates that during
these periods, there has not been a counteracting (negative) indirect effect of volatility
on a real call option on oil. The estimates show that the absolute value of the correlation
has fallen both between the first and second subperiod (and also between the third and
fourth), when volatility has decreased, and between the second and third, when volatility
has increased. As a robustness check, weekly data were also tested. Only for the first
subperiod, 1993–94, the results were not confirmed. A positive correlation estimated
suggests that the GBM assumption does not hold for that subperiod.

For valuation of real options, a negative correlation removes one source of ambiguity
in comparative statics results. But the empirical results indicate that changes in volatility
can lead to changes in the same or opposite direction in the correlation, so the ambiguity
is still there. An assumption that the covariance is invariant to volatility changes is also
not confirmed in the data. Theoretical discussions need to hold all possibilities open.
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Appendix A Calculation of test statistics from (17)

Results for first regime-break:

v̂2 =
1.34

292
+

0.893

341
= 7. 207 8× 10−3

ψ633 =

√
292 · 341

633
× (−0.17875 + (0.030461))√

7. 207 8× 10−3
= −21.907
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Results for second regime-break:

v̂2 =
0.835

341
+

1.21592

2360
= 2. 963 9× 10−3

ψ2701 =

√
2360 · 341

2701
× (−0.030461 + (0.021816))√

2. 963 9× 10−3
= −2.7410

Results for third regime-break:

v̂2 =
1.21664

2360
+

1.30751

764
= 2. 226 9× 10−3

ψ3124 =

√
2360 · 764

3124
× (−0.021816 + (0.017739))√

2. 226 9× 10−3
= −2.0756

Appendix B Test of distributional assumptions

In Table B.1 we show two diagnostic tests based on the residual vector. They test for 12th
order residual autocorrelation (FAR(1−12)), and for departure from normality (χ2

normality).
The tests are bivariate versions of the well known single equation diagnostics, see Doornik
and Hendry (2009). The respective p-values are in brackets. We also give the number of
outliers (larger than 3.5 estimated standard deviations for each variable). In the three
first regimes there is no evidence of autocorrelation, but for regime 4 the test is significant.
The normality test is significant in all regimes. Although the number of large outliers is
relatively small (compared to samples sizes) it is nevertheless clear that a statistical test
that allows for departures from normality is relevant for our purpose.

Table B.1: Diagnostics for bivariate distribution of market and oil real returns. Daily
data

Regime # of obs FAR(1−12) χ2
normality # of outliers (percent)

1 292 1.2049[0.1697] 34.348[0.0000] 3 (1.0%)
2 341 1.1967[0.1764] 133.26[0.0000] 2 (0.6%)
3 2360 1.3621[0.0494] 1061.4[0.0000] 34 (1.5%)
4 764 1.8466[0.0004] 117.06[0.0000] 6 (0.8%)
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