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Abstract

This paper embeds real options in an investment game of in-

complete information in a duopolistic market, where product market

competition influences the state value of the investment, and entry

times are endogenously determined. The model incorporates private

information over types and unveils new features of strategic interac-

tions in imperfectly competitive markets when firms are faced with

the trade-off between commitment and flexibility under demand un-

certainty. The paper illustrates that type-asymmetry and/or initial

demand level alone, as have been previously adopted in the litera-

ture, are insufficient criteria upon which endogenous roles under un-

certainty may be determined when firms have private information over

their types. Rather, the ex post market structure is determined by

threshold functions whose images lie in the type-space of the firms.

These functions, therefore, specify, ex ante, the firms’ optimal strate-

gies, which may involve (anti)-coordination. The model is extended to

consider the plausible case where a firm is able to credibly “fool” its

rival by masking its type. The threshold functions, and thus, ex post

market structures obtained in equilibrium are found to be characteris-

tically the same as with when types are truthfully revealed. Therefore,

the competitive behaviour of firms remain the same whether or not

there are industry regulations that make it illegal for firms to falsify,

mask, or lie about their profits.
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1 Introduction

Firms are often called upon to make irreversible investment decisions in the

face of uncertainty about future demand, and incomplete information over

the competitiveness of the rivals with whom they might be competing for

market share. There are benefits to delaying investment until a future pe-

riod when the uncertain elements of market fundamentals become revealed.

However, there are potential costs of waiting, both in terms of foregone mar-

ket activity and in losing the opportunity to preempt ones rivals. There is

thus, a trade-off between commitment and flexibility.

This trade-off is central to the derivation of optimal investment decisions

in strategic investment problems under uncertainty. In a new market, for

instance, there may be inherent uncertainty about the scale of future de-

mand, cost functions of potential competitors, market price of commodities

etc. An optimal investment strategy must, therefore, be based on a proper

consideration of the strategic value of flexibility against the opportunity

cost of early commitment. By committing to an irreversible investment at

an early stage, a firm may obtain a first-mover advantage in the form of a

lower production cost, earning monopoly rents, or emerging as the Stackel-

berg leader in the subsequent stage. These benefits may however, be eroded

away if market conditions become unfavourable, as the firm cannot simply

recover its initial investment outlay. As a result, a firm’s ability to delay

making such investment until a later time, when more information arrives,

that fully or partially resolves some, or all, of the uncertain elements in the

market, is immensely valuable.

In most industries, firms are often able to exercise this flexibility when

faced with investment opportunities under uncertainty. Which is why in

practice, it is observed that firms do not invest in capital projects until

price rises substantially above long-run average cost. This is in sharp con-

trast to the theoretical provision of the discounted cash flow (DCF) analysis

or conventional net present value (NPV) approach to valuing investments.

The DCF analysis specifies that an investment opportunity is viable when-

ever the discounted income flow is at least equal to the cost of investment

(otherwise known as the Marshallian trigger). This trigger is, in general,

less than what is observed in reality. The main shortcoming of this method

is its inability to factor-in operating flexibility, i.e. the ability of manage-

ment to make, revise or alter planned investment decisions as uncertainty

gets resolved over time. It inherently assumes investment opportunities are

“now-or-never” in nature, and hence, ignores the value of flexibility. To

address this problem, an option-based valuation approach has been pro-

posed as a tool capable of capturing managerial flexibility. It provides a

dynamic decision making framework that affords firms the opportunity to
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delay investment decisions until such a time when more information becomes

available that could influence both the timing and the level of investment.

The real options literature emphasizes the value of this sort of flexibility

and derives the optimal time to make an investment, when its value is deter-

mined, in part, by an exogenous stochastic variable e.g. the market price of a

commodity. The literature presents various examples of flexible investment

strategy in non-strategic (monopoly) and strategic (oligopoly) investments

(e.g. Dixit and Pindyck (1994), Huisman and Kort (1999), Takashima et al.

(2007), Masaaki and Takashi (2005)). The general idea is that the strate-

gic option value of waiting is lower under preemption than in a monopoly.

This is because preemption erodes the option value of waiting for more in-

formation. Firms in these models, and in many others in the real options

literature, are assumed to be non-atomic, and have no real influence on the

macro-structure of the market. The firms are price-takers – competing in

perfectly competitive markets. As such, optimal investment strategies de-

rived in these models do not naturally generalize to industries where product

market competition partly determines the value of the investment.

The reason this is important is that most markets of interest are less than

perfectly competitive, particularly if they involve large sunk costs. A firm

can consistently earn economic rents in such markets which are non-existent

in a perfectly competitive market. The ability to sustain these economic

rents over the life (finite or infinite) of a real asset has very significant im-

pact on the value of the asset. Hence, in a perfectly competitive market, the

state value of an investment opportunity with an infinite life is determined

by the maximum of the expected discounted cash inflows net initial invest-

ment outlay and the deferment value; on the other hand, the state value

in an imperfectly competitive market is determined by the outcome of the

game that describes the market structure, i.e. Nash-Cournot, Stackelberg,

or Monopoly. Therefore, as observed, for example, by Smit and Ankum

(1993) and Smit and Trigeorgis (1995), and others, an options-based ap-

proach to strategic investment needs to be considered from the perspective

of competitive market structure.

The manner in which the burden of uncertainty has been introduced in

the literature on investment decision models in imperfect markets warrants

some consideration. Most authors introduce uncertainty in terms of insuf-

ficient strategic information, for example, as private information on cost

functions or some other form of idiosyncratic shock that is peculiar to indi-

vidual firms. The other common form is the generic uncertainty that affects

all firms in an equal way e.g. the move of nature at the start of a game of

imperfect information. Unfortunately, most of these papers appear to in-

discriminately introduce uncertainty in one of these forms, either in the bid
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to retain tractability, or just to focus on a specific problem. This presents

a number of questions that beg for answers. For example, which form of

uncertainty best describes reality? Which form most influences outcomes

in the games, vis-à-vis first and second mover advantages? Or perhaps, is

there an interactive effect that may be responsible for some of the counter-

intuitive outcomes in existing models? Fortunately, the options valuation

approach adopted in this paper allows us to address these concerns in a very

comprehensive manner that buttresses the impact of uncertainty (in either,

or both forms) in investment games. Our aim is to model irreversible invest-

ment decisions by firms into imperfectly competitive markets where firms

have incomplete information about their competitors’ costs, and demand is

uncertain.

2 Related Literature

Optimal investment strategies or role-choice in strategic investment pro-

grams under uncertainty in imperfectly competitive markets have received

some following in the literature. Gal-Or (1987) demonstrates the role of

strategic uncertainty in an exogenous leader-follower model with segmental

private information about the level of demand. The follower is able to ac-

curately determine the leader’s private information by inverting his output

function. She shows that if the leader attempts to deviate from his equi-

librium output (in order to “fool” the follower into presuming that market

demand is low) and produces an output whose inverse image is outside the

domain of definition of his signals (if this domain is bounded or has discon-

tinuities), the follower may then believe he has more favourable information

than the leader and therefore expand his output. This first-mover disadvan-

tage under uncertainty is sustained even when the domain of definition of

the leader’s signals is unbounded and continuous. In effect, with partially

correlated signals and moderate uncertainty, the leader supplying more, sig-

nals high demand, and then the follower supplies more as well. She also

comments on the possibility of sustaining these first-mover disadvantages

in an endogenous role choice model, but only gave specifications and did

not pursue it further. Mailath (1993) presents a model that allows for en-

dogenous sequencing in an asymmetric information game, where the more

informed firm has the option to enter a market in one of two periods, but the

less informed firm may only enter in the second period. The less informed

firm is able to gain information about market profitability by observing the

more informed firm’s choice. The implications of signalling distortions in

this game result in an equilibrium in which the more informed firm always

enters in the first period, even when he could have earned a higher ex ante
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payoff by moving simultaneously with the uninformed firm. The focus is on

the effect private information has on the choice of roles in an endogenous set-

ting. However, having more information does not always confer leadership

rights endogenously. The option available to each firm influences competi-

tive strategies. Normann (2002), in fact, shows that when the less informed

firm in Mailath (1993) has the opportunity to invest in period 1 as well, the

Stackelberg equilibrium with the uninformed firm being the leader emerges

as one of the equilibria surviving the D1 refinement.

It is curious that simultaneous-play outcome in the second period does

not feature among the equilibria in these models. This may be due, in part,

to the manner in which flexibility and uncertainty are modelled. Under

generic uncertainty, with equal rights to enter the market at any one of two

periods, Sadanand and Sadanand (1996) show that second period Cournot

outcome persists in the set of equilibria, for all levels of risk in the distribu-

tion of demand.

It is pertinent to note that flexibility in these models carries no real op-

tion value, therefore, parametrization of generic uncertainty and/or private

information does not actually make it unprofitable to enter the market at

any one of the entry periods, however large the level of uncertainty might

be. This is not the case when initial investment outlays have to be sunk

before production choices are made. For while profits may be earned (con-

sidering interior solutions alone) within the periods of output choices, the

overall discounted stream of payoff less the investment outlay might not just

be suboptimal, but result in an outright loss. Furthermore, investment de-

cisions faced by firms in the business world very often require such lumpy

investment outlays. Take, for instance, a pharmaceutical firm’s decision to

develop a new drug. The R&D phase of any drug discovery is, characteristi-

cally, capital intensive. The firm cannot simply recover sunk R&D costs in

this endeavour, should it become unproductive. Or, in the event of a suc-

cessful discovery, it remains uncertain if the drug will pass pre-clinical trials

for approval or exactly how long it will take to get approved. Furthermore,

other pharmaceuticals might be coming up with a similar drug. These,

and other industry-specific forms of uncertainty bear upon investment op-

portunities in the real world. It often instructs decision-makers to exercise

caution when making investment decisions under these circumstances (as

the first-mover advantages and disadvantages are both very real).
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Smit and Trigeorgis (1995)’s study quantifies the trade-off between com-

mitment and flexibility in an investment game that incorporates real op-

tions in a strategic industrial organization framework. By developing on

Fudenberg and Tirole (1984), they show how demand uncertainty influences

strategic interactions in environments where the investment is propriety or

shared, competitor is tough or accommodating and whether the strategic

variable is quantity or price. In the contrarian (quantity competition) case,

the game proceeds in two stages. In the first stage, one of the firms has the

opportunity to commit to a strategic capital investment that may give him

a cost, or some other form of commitment, advantage over his competition

in the second stage. The nature of this capital investment may make him

a tough or accommodating incumbent in the second stage. The level of de-

mand in the second stage is unknown, but follows a simple binomial process

whose initial value is known in the first stage. In the second stage, both

firms have the option to either invest in the first period or defer the decision

to invest until the second period, and then decide to invest, or not, having

observed the favourableness of the market condition. Equilibrium payoffs

are earned in each of these periods and during the entire life of the invest-

ment. The value of the investment is derived from discounted cash flows

less the initial investment outlay. They show how the level of demand in the

first stage provides critical thresholds that determine the market structure

in the second stage in the three cases where the strategic capital investment

was, a) not made, b) shared, and c) proprietary.

The market environments in these cases can be thought of as being

analogous to having, a) a less efficient pioneer firm, b) symmetric firms, and

c) a more efficient pioneer firm, in a single-stage multi-period investment

game. This analogy allows us to think of this model as one with endogenous

sequencing, and see exactly what drives the choice of roles. The critical

thresholds of demand in b involves a shift to the left of those in a, i.e. with

equal standing in the market (as in b), the deferment threshold is lower for

the pioneer firm than in a. Similarly, a higher demand level will, in case a,

be required to offset the effect of the initial sunk cost and the pioneer firm’s

inefficiency, before entry may become profitable. Additionally, there exists

a region of indeterminacy, where either firm may emerge as the leader or

the follower. It is interesting, however, to note that in case c, for all levels

of demand considered, this region collapses to a null set. Therefore, for all

levels of observed demand, the pioneer, more efficient, firm never defers in-

vestment when the less efficient firm invests. One of the main contributions

of this paper is to posit that cost asymmetry as depicted in the analogous

framework above, under exogenous uncertainty, does not always preclude a

more efficient firm from deferring when firms have private information about
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their cost function. More succinctly, cost asymmetry alone is not enough

to determine endogenous roles under uncertainty. Competitive strategies in

our model are driven by a pair of continuous functions of known market pa-

rameters (initial observed level of demand and the measure of uncertainty)

whose co-domain is the set of types of the firms. The images of these func-

tions determine critical values of types that specify the optimal strategy for

each firm.

Interestingly, and contrary to the stipulations in Smit and Trigeorgis

(1995) and Dewit and Leahy (2001) we find a non-degenerate region of types

(even for some high levels of uncertainty), where a (anti)-coordination prob-

lem materializes. Cost asymmetry gives no leverage in this region, and it

is never optimal to choose the same action. The optimal strategies are for

either one of the firms to choose to move early while the other defers, and

vice-versa. This will ordinarily be the case if marginal costs are not private

information at the start of the game. Since each firm cannot observe its

rival’s cost, its ex ante scheme in this region will be in mixed strategies. By

modelling private information into this analogous framework, we present a

baseline model that allows us to establish how private information and ex-

ogenous uncertainty individually, and interdependently, influence the choice

of strategies in investment games.

The rest of the paper is structured as follows. Section 3 presents the

model and assumptions, and section 4 describes equilibrium outputs, payoffs

and value of the investment in each continuation game. Section 5 discusses

the sequencing of actions based on the observed parameters of the model

and section 6 contains extensions of the analysis that consider outcomes

in a world where a firm is able to credibly lie about his type, and how

the observed coordination problem might be addressed. Some concluding

remarks follow. All derivations of equilibrium outputs, payoffs and expected

values of the investment are collected in Appendix A. Appendix B contains

all proofs.
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3 The Model

The aim of this paper is to model environments in which firms have limited

information about the state of demand and the competitiveness of poten-

tial rivals in a market; firms’ investment decisions, whilst irreversible once

made, are not ‘now or never’; and competition in the market upon entry

is imperfect. To capture these key features we introduce a dynamic model

in which demand evolves stochastically, firms have incomplete information

about each other’s variable costs, and in order to enter the market firms

must undertake (large) sunk cost investment but have the freedom of choice

over when to undertake this investment. As such, firms face two sources

of uncertainty in the model when making their investment decision: uncer-

tainty over the level of demand; and uncertainty about the competitiveness

of the (potential) rival.

Suppose there are two risk-neutral firms A and B that are considering

entering a market. The sunk cost expenditure required for each firm to enter

the market is K, which is the same for each firm and common knowledge.

Conversely, there is incomplete information over variable costs: each firm

has constant marginal cost drawn from a distribution F with support [c, c̄],

which is private information.

The investment game evolves over a sequence of periods 0, 1, 2, . . . , n,

where period 0 is a pre-play period. Firms discount future payoffs by a

factor δ. To capture the key feature of demand uncertainty but retain mod-

elling simplicity, (inverse) demand is assumed to take the following struc-

ture, which is common knowledge. Inverse demand in period t is given by

P (Qt,Θ(t)) = Θ(t)−Qt where Qt is the aggregate supply from participants

in the market. In period 1 the level of demand is Θ(1) = θ1 for sure, whilst

in period 2 the level of demand evolves stochastically following a binomial

distribution: Θ(2) = uθ1 with probability p and dθ1 with probability 1− p,

where 0 < d < 1 < u and 0 ≤ p ≤ 1 . From period 3 onwards demand

has the same structure as period 2 demand. u and d will be parameterized

to be such that, if firms know the realization of the level of demand when

making their investment decision and it is uθ1, then any type of firm would

choose to invest, whilst if it is dθ1 then any type of firm would choose not

to invest. At the end of each of periods 1, 2, . . . , n the market clears ac-

cording to the total supply from market participants. From the perspective

of period 0 when investment decisions are being made, this simple demand

structure captures the key idea that firms may wish to delay investing until

uncertainty about demand has been resolved.

We model the investment game between the firms using the structure

of an endogenous timing game with observable delay, as introduced by
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Hamilton and Slutsky (1990)1. In period 0 firms decide whether the un-

dertake the investment to enter the market in period 1 (I), when future

demand is subject to uncertainty, or whether to defer making this decision

(D) until period 2 when demand uncertainty has been resolved. If either

firm enters the market they also have to decide on the level of output to

supply. There are several possible scenarios to consider that are introduced

now and formally analyzed in the following section.

If both firms choose to invest in period 1, (I, I), then each firm is subject

to both uncertainty over period 2 demand and their rival’s cost. As such, in

the first period firms compete in a game of Bayesian Cournot competition

with demand level θ1. At the end of this period the market clears and output

and period 1 payoffs become common knowledge so each firm can deduce

the others actual marginal cost. In period 2, therefore, the firms engage in a

game of Cournot competition either with demand level uθ1 with probability

p, or with demand level dθ1 with probability 1− p, which is the same from

period 3 onwards.

If both firms choose to defer the investment decision until period 2,

(D,D), then nothing happens in period 1 and, the level of period 2 demand

is realized as either uθ1 or dθ1 before firms decide whether or not to enter the

market. If the level of demand is dθ1 then both firms choose not to invest

in period 2 and in all subsequent periods. If the level of demand is uθ1 then

both firms will be seeking to invest in the market after which they will engage

in a game of Bayesian Cournot competition, but with updated beliefs about

the support of their rival’s marginal cost distribution since the (observed)

act of delaying reveals information about what the rival firm’s marginal

cost cannot be. At the end of period 2 output choices and payoffs become

common knowledge which reveals the rival’s marginal cost, so from period 3

onwards firms engage in each period in a game of Cournot competition with

demand level uθ1.

Consider now the case where one firm chooses to invest whilst the other

defers their decision, (I,D) or (D, I). In these cases the investing firm enjoys

being a monopolist in period 1. Since their output and period 1 payoff

1The extended game with observable delay is more suited to real-world cases
where there is a lag between investment decisions and actual implementation.
Hamilton and Slutsky (1990) first propose this game as one of two extended games (the
other being the extended game with action commitment) that endogenize the choice of
roles in a duopoly with complete information. In the extended game with observable de-
lay, firms simultaneous choose their adoption period in a pre-play stage (similar to period
0 in our model) and announces their choice before choosing an action. It is assumed that
the firms are committed to whatever adoption period they choose in the preplay stage.
First period Cournot competition emerges when both firms have downward sloping reac-
tion functions. Therefore, in a quantity competition, under further restrictions to payoff
functions (as in Amir (1995)), the first mover advantage is eliminated.
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becomes common knowledge at the end of period 1, the firm that deferred

the investment decision learns the type of their rival. After the realization of

period 2 demand, this firm must decide whether to invest or not. Since the

firm that invested in period 1 has installed capital, it is assumed that this

firm takes the role of a Stackelberg leader whilst the other firm is relegated to

making output decisions after the firm that undertook the early investment,

if it chooses to invest. If the level of demand transpires to be dθ1 then it will

not invest at this stage. If, on the other hand, it is uθ1 then it may. If it does

so it engages in a game of Stackelberg competition as the follower. Whilst

the deferring firm learned the type of its rival from its period 1 activity, the

early entrant doesn’t have such accurate information over its rival’s cost,

but the act of delaying does reveal some information so it should update its

belief about the support of the deferring firm’s marginal cost distribution.

As such, the Stackelberg game is a game of asymmetric information in which

the follower is perfectly informed. At the end of period 2 output and payoffs

become common knowledge and the incumbency advantage disappears so

in period 3 and all subsequent periods either the firms engage in Cournot

competition if the firm that deferred its investment decision invested, or the

early entrant maintains its position as the monopolist if not.

The benefits from investing early are that the firm receives profits from

production in the first period and may, if its rival defers its investment deci-

sion and subsequently enters (given that demand rises), gain the advantage

of being a Stackelberg leader in the second period. However, by doing so it

exposes itself to losses should the level of demand fall.

Formally, we define the game as: G = (N,S, π), N = {A,B} is the set

of players. The inverse demand function at any period, t = 1, 2, ..., is given

by P (Qt, Θ(t)) = Θ(t) − Qt, Qt (= Qt,A + Qt,B) is the aggregate output,

(and Qt,A and Qt,B are compact, convex intervals in ℜ+∪{0}). The demand

intercept, Θ(t), follows a simple binomial process with expected value EΘ(t),

variance σ2, and state space in ℜ+∪{0}. The evolution of Θ(t) is similar to

a Markov process2 whose absorbing state is its value in period 2. Therefore,

(see Figure 1) demand remains at its period-2 level for all subsequent periods

after that.

Let P = {I,D}, which is the set of available actions in period 0. I

corresponds to sinking the investment cost K to enter the market in period

1. D corresponds to delaying the investment decision to period 2 at which

point the uncertainty about demand will be resolved, in which case (due

to the parameter restrictions we impose) the firm will invest to enter the

2In this setup, Pr(Θ(3) = δθ1|Θ(2) = νθ1, Θ(1) = θ1) = Pr(Θ(3) = δθ1|Θ(2) = νθ1),
where δ and ν take values u or d and 0 < d < 1 < u.
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1− p Θ(2) = dθ1

p Θ(2) = uθ1

Θ(1) = θ1

Θ(3) = uθ1

Θ(3) = dθ1

. . . Θ(n) = uθ1

. . . Θ(n) = dθ1

. . .

. . .

Figure 1: Binomial Process Depicting Stage 2 Evolution of Demand

market if and only if market demand is favourable (Θ(2) = uθ1). The set

of strategies for player i = A,B is Si = P × Ξi, where Ξi is the family of

functions that map ζi into Qt,i for each period t = 1, 2, . . .; and ζi is the set

containing {(I, I), (I,D), (D, I) × Qt,j , (D,D)}. Define si = (σ, χt,i) ∈ Si,

where σ ∈ P and χt,i ∈ Ξi. Firm i’s pure strategy in any period t involves the

mapping χt,i : ζi → Qt,i, where t = 1, 2, . . .. Having assumed that demand

takes the same level as in period 2 from period 3 onwards, and noting that

any relevant information will have been revealed by the beginning of period

3, it suffices to derive expressions of χt,i only for t = 1, 2, 3.

The appropriate solution concept for the extended game in this model,

which ultimately determines the value of the investment, is that of sequential

equilibrium introduced by Kreps and Wilson (1982). The presence of non-

singleton information sets in games of incomplete information of this kind,

precludes subgame perfection, as there are no proper subgames. A sequential

equilibrium requires sequential rationality in the strategies, and that the

beliefs held by a firm at each information set it finds itself are consistent with

the strategy that got it there. Sequential rationality in our game requires

that, at each information set, the output choice of firm A is a best response

to the output choice of firm B, given firm A’s belief about the support of the

marginal cost distribution of the firm B. Also, the belief held by firmA about

the support of the marginal cost distribution of firm B, at any information

set consistent with the chosen strategy, must be derived by Bayes’ rule. In

contrast to the perfect Bayesian equilibrium concept, sequential equilibrium

specifies how a firm should form beliefs when it reaches an out-of-equilibrium

information set. Because firms announce their chosen entry times in period

0, out-of-equilibrium signals may be sent in terms of outputs as well as

adoption periods. Therefore, to accurately obtain the expected value of

the investment for period 0 choice, we require sequential rationality and

consistency in the expected output choices of the firms in all periods. Thus,
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a strategy profile (λ1(sA), λ2(sB)), for this game, is a sequential equilibrium

if for any sA and sB, such that for all (a, b) ∈ P, there exists a probability

distribution F̃ over c(·) such that (a, b) is chosen to maximize expected profits

(and hence, the value of the investment) given χA
t and χB

t ; also, given the

choice of adoption periods and given the firms’ beliefs at each information

set, χA
t and χB

t are chosen optimally; where the beliefs about the support

of the distribution of each other’s marginal cost held by the firms at each

information set are obtained by Bayes’ rule.

4 Continuation Game Analysis

At the beginning of period 0, firm A(B) faces only one source of uncer-

tainty regarding its decision in period 1, i.e. the marginal cost of firm B(A),

cB(A). In period 2, however, (looking forward from period 0), each firm

faces two sources of uncertainty, i.e., Θ(2) and its rival’s marginal cost. The

realization of Θ(2) is common knowledge at the beginning of period 2, and

marginal costs are revealed after period 1 or 2, or not at all (depending on

period-0 choices and the realization of Θ(2)). The parameters u and d gov-

erning the evolution of Θ(2) are related to the variance by: u = exp (σ
√
t)

and d = exp (−σ
√
t) (see Cox and Rubinstein (1979)). Payoffs in each pe-

riod represent cash flows generated from output competition in the product

market.

The investment decision of each firm, in period 0, depends on its cal-

culation of the expected value of the investment opportunity at each entry

period t = 1, 2, ..., given the possible actions of the rival firm and its expec-

tation of Θ(t). This will be the entry choice that produces, in expectation,

the highest value of the investment that exceeds the initial investment out-

lay by an amount equal to the value of keeping the investment option alive.

The investment value, ϑ
(a,b)
(·) , for each possible outcome in period 0, is given

by the sum of the expected profits in period 1 and the expected discounted

cash flows of all future periods, minus the investment outlay, K.

Simultaneous-move Equilibria

If both firms choose to sink K in period 1, they play a Bayesian-Cournot

game in the early production period, and the basic Cournot in the sec-

ond period and all other periods after that. Let Eo(·) denote the expected

value of its argument given the information available in period 0 and let

qt,A ∈ Qt,A ⊆ ℜ+ ∪ {0} denote the output choice for firm A in period t.

It follows that, the firm may not find it profitable to produce outputs for

all realizations of its marginal cost. As a matter of fact, we assume (as

in Hurkens (2012)) that there exist some realizations of cA) for which the
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equilibrium output is 0. Therefore, firm A produces q∗1,A = 1
6(2θ1− c̈− 3cA)

in period 1 and earns π
∗(I,I)
1,A = 1

36(2θ1 − c̈ − 3cA)
2, where c̈ =

∫ α

c
c dF (c).

This integral is taken over an updated support of the marginal cost dis-

tribution, i.e., if A’s rival has chosen to invest early, A conjectures that

its rival’s marginal cost must be below some threshold α above which he

will rather delay if A invests. Therefore, c̈ represents firm A’s mean belief

about his rival’s marginal cost. In period 2, having deduced its rival’s (firm

B’s) marginal cost, firm A produces q∗2,A = 1
3(νθ1 − 2cA + cB) and earns

π
∗(I,I)
2,A = 1

9(νθ1 − 2cA + cB)
2, where ν is either u or d, given the realization

of Θ(2). These are ex post outputs and payoffs. Ex ante, the expected value

of period-2 payoff is Eo(π
∗(I,I)
2,A ) = 1

9(σ
2+η2c̈ +(puθ1+(1−p)dθ1+ c̈−2cA)

2)

(see Appendix A for derivation). η2c̈ is the variance of the marginal cost

derived from the updated support of its distribution. Period 3 and subse-

quent periods’ payoffs follow accordingly. The ex ante expected value of the

investment to this firm is therefore,

ϑ
(I,I)
A = γ1Eo(π

∗(I,I)
1,A ) + γ2Eo(π

∗(I,I)
2,A )−K, (1)

where γ1 = 1/(1 + ρ) and γ2 = γ1/ρ.

If both firms choose period 2, i.e. (a, b) = (D,D), no production takes

place in period 1. Output choices are made based upon the observed realiza-

tion of Θ(2 ), and only when it is uθ1. Ex ante, this happens with probability

p, illustrating the fact that firms are not obligated to exercise their option to

invest if they find it worthless. Marginal costs are still private information,

but by choosing to defer, a firm, say A, reveals information about its type.

Its rival, firm B, updates its belief about the support of the distribution of

firm A’s marginal cost, i.e. B believes that A’s true marginal cost must be

greater than the lower bound of the prior support of the distribution. The

updated lower bound corresponds to the value of cA, say β, that makes it

unprofitable for A to invest early if B defers. Bayesian updating, therefore,

requires B to put probability zero on all types of A below β. Let ĉ be each

firm’s updated mean belief of their marginal costs (i.e. ĉ =
∫ c̄

β
c dF (c)).

A Bayesian-Cournot game ensues in the second period, while the basic

Cournot is played in subsequent periods. The ex ante expected value of the

investment is given by,

ϑ
(D,D)
A = p

(

−γ1K + γ1
2
Eo(π

∗(D,D)
2,A ) + γ1γ2Eo(π

∗(D,D)
3,A )

)

. (2)

γ1 and γ2 are as previously specified. Period-2 payoff, Eo(π
∗(D,D)
2,A ), is ((2uθ1+

ĉ− 3cA)
2)/36, and expected payoffs for each of the subsequent periods after

13



is ((uθ1 + ĉ− 2cA)
2)/9.

Sequential-move Equilibria

Choosing (I,D), as with (D,D), also reveals information about the type of

each firm. Suppose A chooses to enter early, and B defers, by choosing to

defer, B sends a signal about the lower bound of the support of its marginal

cost distribution, and A updates its belief about its rivals marginal cost

accordingly. In the asymmetric information game played in period 2, A’s

marginal cost is revealed, but A still has incomplete information about its

rival. However, A believes that B’s true marginal cost must lie in the interval

[α, c̄] ⊂ [c, c̄], where α is the infimum of the the set of marginal costs for which

B finds it unprofitable to invest early if A invests early. Let c̆ denote A’s

mean belief about the marginal cost of B based upon the updated support

of the marginal cost. The first-mover’s expected payoff stream is as follows:

Eo(π
∗M
1,A) = ((θ1−cA)2)/4, Eo(π∗(I,D)

2,A ) = (p(uθ1+c̆−2cA)
2)/8+((1−p)(dθ1−

cA)
2)/4, and Eo(π

∗(I,D)
3,A ) = p((uθ1 + c̆ − 2cA)

2)/9 + (1 − p)(dθ1 − cA)
2)/4.

The corresponding expected value for the first-mover is

ϑ
(I,D)
A =

(

γ1Eo(π
∗M
1,A) + γ21Eo(π

∗(I,D)
2,A ) + 9γ1γ2Eo(π

∗(I,D)
3,A )

)

−K. (3)

Firm B’s expected payoff stream if, and when, it enters is Eo(π
∗(I,D)
2,B ) =

((uθ1 − 2cB + 2c̃ − c̆)2)/16 and Eo(π
∗(I,D)
3,B ) = ((uθ1 − 2cB + c̃)2)/9, where

c̃ =
∫ β

c
c dF (c) is B’s mean belief of about A’s marginal cost when he ob-

serves that A has chosen to invest early. The payoffs for all periods after

period 3 are equivalent to that of period 3. Let the superscriptsM indicates

monopoly rent, then the follower’s expected value for the investment is,

ϑ
(I,D)
B = p

(

−γ1K + γ1
2
Eo(π

∗(I,D)
2,B ) + γ1γ2Eo(π

∗(I,D)
3,B )

)

. (4)

When roles are reversed, these expected values are simply reversed as well.

It is not inconceivable that the sequential equilibria in this game may

indeed be separating and perfectly revealing. In fact, with the increasing

stringency on the regulations for financial and accounting reports, it might

be difficult and/or illegal for a firm to misrepresent information about its

costs and profits. The first part of our analyses assumes such environment.

Therefore, in the sequential play outcome, for instance, the follower in period

2 observes first period (monopoly) payoff of the leader and can accurately

infer his marginal cost (we have assumed the market clears after each pe-

riod). Also, the follower’s ex ante mean belief about the marginal cost of
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the leader uses the distribution’s full support, hence c̃, in its best response

function and in the derivation of the investment value, as seen above. In

effect, it does not matter what the first mover’s exact cost is, in expectation,

the follower’s reaction is the same. We assume that, should demand rise in

period 2, the market will be shared in a Stackelberg fashion, and also, that

there exists a first-mover disadvantage should demand fall in period 2. In

Section 6, we illustrate, as a possible extension to this model, how the pos-

sibility of misrepresenting one’s type may change or influence outcomes in

this game.

5 Endogenous Timing

In this section we analyze the timing decisions of firms in the light of the

analysis undertaken above. We proceed as follows. Endogenous timing in

the game is based on type, i.e. marginal cost. Therefore, the marginal cost

draws of each firm at the beginning of the game determines what outcomes

emerge endogenously. Figure 2 represents the normal form of the extended

game.

Firm B
I D

Firm A I ϑ
(I,I)
A , ϑ

(I,I)
B ϑ

(I,D)
A , ϑ

(I,D)
B

D ϑ
(D,I)
A , ϑ

(D,I)
B ϑ

(D,D)
A , ϑ

(D,D)
B

Figure 2: Normal-Form Representation of the Game.

Lemma 1. For moderate levels of uncertainty, u:

(i) ∃ c1 ∈ [c, c̄] ∋ ϑ(I,I) = ϑ(D,I), and

(ii) ∃ c2 ∈ [c, c̄] ∋ ϑ(I,D) = ϑ(D,D)

The variance of demand provides a measure of the level of uncertainty

investors face. In binomial games of this kind, we are able to represent the

variance in terms of the model parameter u, i.e. σ2 = (ln(u))2. It there-

fore follows, that very high values of u indicates high levels of uncertainty,

and so, high cost firms are much more wary of committing early. Very low

values of u, on the other hand, diminishes the option value of waiting, in

this case, some high cost firms might find it optimal to enter early. To de-

termine optimal choices for values of u that fall within these extremes, we

study the behaviour of the investment value functions. Firstly, it is easy to
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see that ϑ(I,I), ϑ(D,I), ϑ(I,D) and ϑ(D,D) are strictly convex, monotone de-

creasing functions of c on the interval I := [c, c̄]. This is because these value

functions are monotone transformations of the individual equilibrium quan-

tities derived within each period, which are themselves strictly decreasing

and convex in the marginal cost. Secondly, and they satisfy the following

conditions:

a) ϑ(I,I)(0) > ϑ(D,I)(0), ϑ(I,D)(0) > ϑ(D,D)(0) and

b)

∣

∣

∣

∣

∣

∂ϑ(I,I)

∂c

∣

∣

∣

∣

∣

>

∣
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∣

∣

∣

∣

∣

∂ϑ(D,D)

∂c

∣

∣

∣

∣

∣

on I.

Let f1 = |∂ϑ(I,I)/∂c| − |∂ϑ(D,I)/∂c| and f2 = |∂ϑ(I,D)/∂c| − |∂ϑ(D,D)/∂c|.
f1 and f2 are simple linear monotonic decreasing function of c, and are

positive for all values of c on I such that ϑ(I,I) and ϑ(I,D) are non-negative

(see Appendix B for details);

c) if ξ0, ξ1, ε0 and ε1 are respectively the ”zeros” of ϑ(I,I), ϑ(D,I), ϑ(I,D)

and ϑ(D,D) on I, then ξ0 < ξ1, ε0 < ε1 and ξ0 < ε0 a.s.

The roots ξ0, ξ1, ε0 and ε1 of the value functions are themselves functions of

the beliefs held by the firms during the course of the game, i.e. α and β (see

Appendix B for details). Now, let g1(α, β) = ξ0 − ξ1 and g2(α, β) = ε0 − ε1;

we show in Appendix B that g1 and g2 are negative everywhere on I for all

values of α and β. Furthermore, ξ0 < ε0 on I, and so, ϑ(I,I) will always be

less than ϑ(I,D).

Now, since the functions ϑ(I,I), ϑ(D,I), ϑ(I,D) and ϑ(D,D) satisfy condi-

tions (a) and (b), along with strict convexity and monotonicity, then, there

must be two distinct points of intersection in I where ϑ(I,I) = ϑ(D,I) and

ϑ(I,D) = ϑ(D,D) respectively.

Lemma 2. The interval [c1, c2] is non-degenerate.

It is easily observed that if ξ0 < ε0 as in Lemma 1, the points c1 and

c2, corresponding to the intersections of the pair of value functions, do not

coincide, moreover, c1 < c2.

Figure 3 illustrates the critical regions on the interval I, within which

one or more of the outcomes in period 0 is dominant. These outcomes are

summarized in Table 1, and presented formally, in the propositions that

follow:
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Figure 3: Investment Values for Period-0 Outcomes

Firm A/Firm B cB < c1 c1 < cB < c2 cB > c2

cA < c1 I, I I,D I,D
c1 < cA < c2 D, I I,D; D, I I,D
cA > c2 D, I D, I D,D

Table 1:Belief-based Equilibria

Proposition 1. (Simultaneous-play Equilibrium). If both firms indepen-

dently draw marginal costs in the intervals [c, c1) and (c2, c̄], the dominant

strategies are first- and second-period simultaneous play equilibria respec-

tively.

Proposition 2. (Sequential-play Equilibrium). If the firms’ marginal cost

draws lie in separate regions delineated by c1 and c2, a sequential-play equi-

librium emerges as the dominant strategy; moreover, the more efficient firm

emerges endogenously as the first-mover.

Proposition 3. When both firms independently draw marginal costs in the

interval (c1, c2), ex ante, there is a mixed strategy in which firms randomize

over I and D, and an (anti)-coordination problem ensues when they use the

same mixed strategy.

Proofs for Proposition 1 and 2 follow directly from Lemma 1 and

Lemma 2, and the summary in Table 1. See Appendix B for proof of

Proposition 3.
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6 Discussion

As is evidenced from Table 1, the choice of roles in this game is governed

by the firms’ types through the critical thresholds c1 and c2. These thresh-

olds are parametrized by the level of demand uncertainty and the beliefs

of the firms. Quite unlike Smit and Trigeorgis (1995), investment timing is

not solely determined by the level of demand, and more so, a more efficient

firm may not necessarily emerge endogenously as the first mover (as in case

”c∗” of the analogous framework of Smit and Trigeorgis (1995) , where the

strategic investment is proprietary). The belief-based equilibria we have de-

rived in this paper show that what outcomes emerge endogenously depends

primarily on the side of the critical thresholds c1 and c2, the firms’ marginal

costs lie, the values of which are estimatable at the start of the game. Simple

cost(type) asymmetry is insufficient, therefore, to describe outcomes when

there is private information about types under demand uncertainty. The

import of private information in investment games of this nature is clearly

non-trivia. For example, if both firms draw marginal costs in the intervals

described in Proposition 1, then symmetric or not, the optimal outcome

is simultaneous investment. On the other hand, no matter how close cB
might be to cA, if cA < c1 < cB, then firm B’s dominant strategy is to delay.

A leader-follower equilibrium emerges endogenously only when their types

are sufficiently asymmetric as in Proposition 2. Proposition 3 shows an

outcome that differ from that of Smit and Trigeorgis (1995) where a more

efficient firm never chooses to defer if its rival invests. As we have shown,

this interval is non-degenerate and does not collapse into a null set as their

model specifies. Ex post, we may, therefore, find a more efficient firm emerg-

ing as the second-mover. The intuition behind this is that when a firm draws

a type that falls in this interval, it realizes that its dominant strategy is to

defer if its rival invests, and to invest, if its rival defers. Unlike in the inter-

vals [c, c1) and (c2, c̄] where a firm’s dominant strategy is to invest and defer

respectively, irrespective of what its rival chooses; in the interval (c1, c2),

each firm’s optimal strategy is conditional on its rival choosing the exact

opposite. But firm in this interval has not knowledge of its rival’s marginal

cost, and therefore, must use a mixed strategy. We show in the Appendix

A that if both firms use the same mixed strategy the (anti)-coordination

problem will still persists.

A firm’s dominant strategies evolve across the type space, and the value

of its option to defer investment increasing with the type it draws. For a firm

with sufficiently large marginal cost, deferring commitment decision until

the second period, at which time some, or all, of the uncertainty elements

of the game are resolved, becomes increasingly preferred. As the option
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value increases, the first-mover advantage decreases. Also, ∂c1/∂u < 0 and

∂c2/∂u < 0 for any given level of demand, meaning that the sub-spaces of

the type-space where a first-mover advantage exists shrink with uncertainty

for the a more efficient firm.

7 Concluding Remarks

This paper presents a baseline investment game of incomplete informa-

tion under uncertainty, where product market competition influences the

state value of the investment, and timing is endogenously determined. We

have shown that cost asymmetry is insufficient criterion upon which out-

comes may be determined when there is private information over types (see

Dewit and Leahy (2001), where cost asymmetry is used to determine market

structure in an investment game with observable delay under demand uncer-

tainty). Consequently, a first-mover advantage may not exist for sufficiently

large draw of types, and when it does, it diminishes with type and with the

level of uncertainty. The sequential equilibrium concept employed ensures

that even when a firm defies the requirement of the game with observable

delay (i.e. does not commit to its period 0 choice), the rival firm, finding

itself on an off-equilibrium path is able to form beliefs consistent with how

he may have arrived at this information set and update its belief about the

defecting firm’s type appropriately.

An important assumption that drives the results in this paper is that

the market clears in each period of production, and each period’s payoffs

are observed before the next period’s output choices are made. However,

an immediate extension to our model is to consider how the game might

evolve if the first mover is able to credibly mask his type. In order to pursue

this ideal, the firms may only be able to observe outputs and not payoffs in

this particular world. This may be considered under two categories. One, is

where the first mover can mask his type and the follower believes it. Two, is

where the follower knows that the first mover may mask his type, and then

modify his actions accordingly. Interestingly, the outcomes in both cases are

similar. In the first case, we find that if the first mover shades his cost by

the factor ̺, where 0 < ̺ < 1, then the benefit he derives from “fooling”,

as it were, his rival into considering him more efficient in the Cournot game

in period 3 outweighs the temporary loss in revenue he would experience

in period 1 and 2. The net present value of this benefit is concave in the

amount, ̺, with which he shades his cost. In the second case, even though

the potential follower realizes that the first mover may be lying about his

type, as a Stackelberg follower in period 2, his optimal action is to best

respond to the leaders output, whether it be a lie or not. Having deduced
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the cost relevant to the leaders output in the second period, the third period

Cournot game proceeds accordingly at which point the true marginal cost

of the first mover is then revealed. The Cournot competition in subsequent

periods progress as with when both firms have been truthful all along.

Our conjecture is that, this additional incentive to move first (being able

to benefit from lying) may not qualitatively alter the specifications of our

game. The quantitative implication may be that it reduces the values of

the critical thresholds that determine the outcomes of the game. We leave

the determination of the value of the investment and the specifics of the ex

post market structures that emerge endogenously when masking ones type

is possible as the subject of future research.

Appendix A

Equilibrium Outputs, Payoffs and Investment Value

Simultaneous-move Equilibria

If at the decision period (period-0), both firms choose to sink the investment

outlay, K, in period 1, i.e. (a, b) = (I, I), then a Bayesian-Cournot game

ensues in period 1 since marginal costs are still private information. Fur-

thermore, as we have not made the common assumption that qt(c) > 0 for

all realizations of c, therefore, there exists some realizations of c for which

the equilibrium output is 0 (see Hurkens (2012)). The firms, being ex ante

symmetric, and having independently drawn their marginal costs, will be

maximizing expected profits over an adjusted support of the marginal cost

distribution as follows (we show this for firm A):

max
q1,A(cA)

E(π
(I,I)
1,A ) = max

q1,A(cA)
(q1,A (θ1 − q1,A − E(q1,B(cB))− cA)) (A1)

For notational convenience, we will be using q1,A for q1,A(cA) with the

understanding that output decisions are functions of drawn marginal cost

values. Firm A’s expectation of B’s output in (A1) is based on the belief

that there is a marginal cost threshold value, α, above which A, itself, will

find it unprofitable to enter the market in period 1 (and hence produce zero

output). As the firms are ex ante symmetric, firm A believes this to be true

of its rival, firm B. It therefore follows from (A1) that

q̂1,A =
1

2
(θ1 − E(q1,B(cB))− cA) and q̂1,B =

1

2
(θ1 − E(q1,A(cA))− cB)

(A2)
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Ex ante, E(q̂1,A) = E(q̂1,B). Hence, E(q̂1,B) =
1
2 (θ1 − E(q1,A(cA))− E(cB)).

Note that E(cB) =
∫ α

c
cBdF (cB) := c̈, where α ∈ (c, c̄]. Expected outputs

for independent draws of marginal costs in this interval is

E(q1,B) =
1
2 (θ1 − E(q1,A(cA))− c̈) . (A3)

Since expected outputs for both firms are taken over the same support, firm

B should therefore expect that E(q1,B) = E(q1,A). Using this in (A3), we

have

E(q1,B) =
θ1 − c̈

3
= E(q1,A) (A4)

Substituting (A4) for the expectations in (A2), the equilibrium outputs for

the firms are hence,

q∗1,A =
1

6
(2θ1 − c̈− cA) and q∗1,B =

1

6
(2θ1 − c̈− cB) (A5)

The corresponding expected equilibrium payoffs are,

π
∗(I,I)
1,A = 1

36 (2θ1 − c̈− cA)
2 and π

∗(I,I)
1,B = 1

36 (2θ1 − c̈− cB)
2 . (A6)

At the beginning of period 2, outputs and payoffs from period 1 would

have been observed, therefore, the true marginal costs of each firm can

be deduced. The demand level for period 2 is also observed at the start

of the period. Having chosen (I, I) in period 0, the firms compete a là

Cournot from period 2 onwards, having full information about the market

parameters. Equilibrium outputs and payoffs in period 2 are

q∗2,A = 1
3 (θ2 − 2cA + cB) and π

∗(I,I)
1,A = 1

9 (θ2 − 2cA + cB)
2 . (A7)

Note, however, that these are ex post outputs and payoffs, so θ2 in (A7) is

either uθ1 or dθ1 (because Θ follows a binomial process from period 2). In

order to derive the expected net present value of the investment, we require

ex ante expectations of the payoffs as follows
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Eo(π
∗(I,I)
2,A ) = Eo

[

1

9

(

Θ(2) − 2cA + cB

)2
]

=
1

9

(

Var(Θ(2) + (cB − 2cA)) +
(

Eo

(

Θ(2) − 2cA + cB

))2
)

=
1

9

[

σ2
(Θ(2))

+ ηc̈ + (puθ1 + (1− p)dθ1 + c̈− 2cA)
2
]

.

(A8)

Where ηc̈ is the variance of the marginal cost distribution over the adjusted

support. At period 0, the level of demand in period 2 is not known with

certainty, and the marginal cost of the firm’s rival is still private information,

hence the expectations in (A8). Period 3, and subsequent periods’ payoffs

follow (A8), therefore, the expected net present value of the investment at

the time of decision is

ϑ
(I,I)
A =

1

1 + ρ

(

1

36
(2θ1 − c̈− 3cA)

2

)

+
1

9ρ(1 + ρ)

(

σ2
(Θ(2))

+ ηc̈ + (puθ1 + (1− p)dθ1 + c̈− 2cA)
2
)

−K.

(A9)

Putting γ1 = 1/(1 + ρ) and γ2 = γ1/ρ in (A9) gives the expression in (1).

When both firms keep the option to delay alive until period 2, (i.e.

(a, b) = (D,D)), then, given that demand rises in period 2, (i.e. θ2 = uθ1
with probability p), they simultaneously enter the market. However, while

marginal costs remain private information, each firm conjectures that the

choice to delay implies that its rival’s true marginal cost must lie in some

interval (β, c̄], where β is the upper bound of the marginal cost distribution

support below which first period entry is profitable. The firms, therefore,

put zero probabilities on all types within this interval.

Although second period demand level has now been observed, a Bayesian-

Cournot game is played again in period 2 since marginal costs are still private

information. The basic Cournot game is then played in all other periods af-

ter 2. Ex ante expected output and payoff in period 2 are

q
∗(D,D)
2,A = 1

6 (2uθ1 + ĉ− 3cA) and π
∗(D,D)
2,A = 1

36 (2uθ1 + ĉ− 3cA)
2 ,

(A10)

where ĉ =
∫ c̄

β
cAdF (cA). Firm B’s output and payoff are similarly deter-

mined.

Expected output and payoff in period 3 and all other periods after that
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are

q
∗(D,D)
3,A = 1

3 (uθ1 + ĉ− 2cA) and π
∗(D,D)
3,A = 1

9 (uθ1 + ĉ− 2cA)
2 ,
(A11)

and the value of the investment when the option is kept alive until period 2

is given by

ϑ
(D,D)
A = p(−k1K +

γ21
36 (2uθ1 + ĉ− 3cA)

2 + γ1γ2
9 (uθ1 + ĉ− 2cA)

2). (A12)

γ1 and γ2 are as previously defined.

Sequential-move Equilibria

A number of scenarios play out when the firms choose to enter the market

at different times. It suffices to consider the case for firm A entering early

and firm B differing until period 2 before deciding to enter or not. After

these choices are made and observed, firm A invests in period 1 and acts as

a monopolist. His equilibrium output and payoff are

q
∗(I,D)
1,A = 1

2 (θ1 − cA) and π
∗(I,D)
1,A = 1

4 (θ1 − cA)
2 . (A13)

Firm B incurs no sunk cost and earns nothing in this period. Should demand

rise in period 2, firm B exercises its right to enter the market and acts as a

Stackelberg follower. Firm A, having observed that B has chosen to defer ,

conjectures that B’s marginal cost must lie in the interval [α, c̄] ⊂ [c, c̄]. A
maximizes its Stackelberg leader payoff given the expected reaction function

of B as follows,

max
q2,A

E(π
(I,D)
2,A ) = max

q2,A
{q2,A (uθ1 − q2,A − E(q̂2,B(cB))− cA)}

= max
q2,A

{q2,A
(

uθ1 − q2,A −
[

uθ1 − q2,A − c̆

2

]

− cA

)

}.
(A14)

Where c̆ =
∫ c̄

α
cBdF (cB). Solving (A14) and substituting into the follower’s

optimization problem yield the expected equilibrium outputs:

q
∗(I,D)
2,A = 1

2 (uθ1 + c̆− 2cA) and q
∗(I,D)
2,B = 1

4 (uθ1 − 2cB + 2c̃− c̆) .
(A15)
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Their respective corresponding expected payoffs are

π
∗(I,D)
2,A = 1

8(uθ1 + c̆− 2cA)
2 and π

∗(I,D)
2,B = 1

16(uθ1 − 2cB + 2c̃− c̆)2.
(A16)

Marginal costs and demand level is now revealed and the basic Cournot

game is played from period 3 onwards. The expected outputs and payoffs

produced and earned respectively in each of these periods are:

q
∗(I,D)
3,A = 1

3 (uθ1 + c̆− 2cA) and q
∗(I,D)
3,B = 1

3 (uθ1 + c̃− 2cB) ,
(A17)

and

π
∗(I,D)
3,A = 1

9(uθ1 + c̆− 2cA)
2 and π

∗(I,D)
3,B = 1

9(uθ1 + c̃− 2cB)
2.
(A18)

c̃ in the expressions above is
∫ c̄

c
cAdF (cA) (i.e. the expected value of firm

A’s marginal cost over the full support of its distribution). The expected

value of the investment for each firm is given by,

ϑ
(I,D)
A = γ1

θ1 − cA
4

+ γ21

(

p(uθ1 + c̆− 2cA)
2

8
+

(1− p)(dθ1 − cA)
2

4

)

+ 9γ1γ2

(

p(uθ1 + c̆− 2cA)
2

9
+

(1− p)(dθ1 − cA)
2

4

)

−K
(A19)

and

ϑ
(I,D)
B = p

(

−k1K + k21
(uθ1 − 2cB + 2c̃− c̆)2

16
+ k1k2

(uθ1 + c̃− 2cB)
2

9

)

.

(A20)

Appendix B

Given that the value functions themselves are monotone decreasing and

convex in over the support of the marginal cost distribution, it suffices,

therefore, that along with conditions (a), (b) and (c), the claims in Lemma

1 hold. First, we show that f1 and f2 are positive everywhere on the support

of the marginal cost distribution as follows.

(A9) and (A20) give the expected value of the investment when period

0 choices are respectively (I, I) and (D, I). Note that (A20) refers to the
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value of the investment to a firm who choses to defer, when its rival enters

early. If p = 1/2 and the marginal cost expectations are evaluated over a

continuous uniform distribution we obtain

ϑ(I,I) =

(α

2
− 3c+ 2θ1

)2

36(1 + ρ)
+

α2

12
+

(

α

2
− 2c+

uθ1
2

+
θ

2u

)2

+ ln(u)2

9ρ(1 + ρ)
−K
(B1)

and

ϑ(D,I) =
1

2











(

1

2
(−α− 10) + β − 2c+ uθ1

)2

16(1 + ρ)2
+

(

β

2
− 2c+ uθ1

)2

9ρ(1 + ρ)2
− K

1 + ρ











.

(B2)

Without loss of generality, let [c, c̄] = [0, 1]. This implies that α, β ∈ [0, 1].

f1 =

∣

∣

∣

∣

∣

∂ϑ(I,I)

∂c

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∂ϑ(D,I)

∂c

∣

∣

∣

∣

∣

=
1

144uρ(1 + ρ)2
(

32θ1 + (32θ1 + u(90 + 53α− 18β + 48θ1 + 14uθ1

− 164c))ρ+ 12u(α+ 4θ1 − 6c)ρ2 − 16u(2α+ β − 4c)
)

.

(B3)

It is easy to see that f1 is linear in c and differentiable on [0, 1], Also,

f1(0) > f1(1) ≥ 0. Furthermore,

∂f1
∂c

= −(1 + 2ρ)(16 + 9ρ)

36ρ(1 + ρ)2
. (B4)

Notice that (B4) is independent of c. Also, 0 < ρ < 1, therefore, given (B4),

and the fact that f1(0) > f1(1) ≥ 0, we see that f1 is monotonic decreasing

and non-negative for all c in I, where ϑ(I,I) ≥ 0.

Similarly, f2 = |∂ϑ(I,D)/∂c| − |∂ϑ(D,D)/∂c| > 0 for all c in I where

ϑ(I,D) ≥ 0. f2 is differentiable on [0, 1] and f2(0) > f2(1) ≥ 0. Moreover, it

is linear and monotonic decreasing as shown in (B5).

∂f2
∂c

= −1 + 2ρ(2 + ρ)

4ρ(1 + ρ)2
. (B5)

This verifies condition (b) of Lemma 1.

For condition (b), we begin by noting that g1(α, β) = (ϑ(I,I))−1(0) −
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(ϑ(D,I))−1(0) and g2(α, β) = (ϑ(I,D))−1(0) − (ϑ(D,D))−1(0). Again, WLOG,

we let [c, c̄] = [0, 1]. Solving for the roots of ϑ(I,I) and ϑ(D,I), and taking the

difference, we have

g1(α, β) =
−3245− 534β − 8

√
15

√

49977 + 36α− 86α2 − 1014 ln
[

3
2

]2

2028

+
525α+ 36

√
10
√

3718− (1 + α− β)2

2028

( set α = 1 and β = 0 in the numerator of the above expression )

< −10156.58 + 7466.56

2028

= −2690.02

2028

< 0.

(B6)

Using α = 1 and β = 0 in the numerator of the first line in (B6) minimizes

the absolute value of the negative part of it, whilst maximizing the absolute

value of positive part. This allows us to obtain the inequality in the line

that followed. In the same vein, we have it that,

g2(α, β) =
17989 + 445α−

√
55
√

2278765− 267α(34 + 9α)

2968

+
−2147− 83β + 2

√
10
√

32933− (−46 + β)β

338

( set α = 1 and β = 0 in the numerators of the above expression )

< −11166.94

2968
+

18434

2968
− 2147

338
+

1147.75

338

≈ 2.44− 2.97

< 0.

(B7)

Again, putting α = 1 and β = 0 minimizes the absolute values of the

negative terms of the first line of expression in (B7), whilst maximizing the

positive terms of it.

To conclude the verification of condition (c) of Lemma 1, we let h =

ϑ(I,I))−1(0)− ϑ(I,D))−1(0), and show that h < 0 on [0, 1].
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We have

h =
−2519591− 5936

√
15

√

49977 + 36α− 86α2 − 1014 ln
[

3
2

]2

1504776

+
143901α+ 507

√
55
√

2278765− 267α(34 + 9α)

1504776
.

(B8)

Recall that α represents the believe a firm holds about its rival’s marginal

cost, given his period-0 choice, and it lies in the interval [0, 1]. Moreover,

h is linear in α, therefore, it suffices to show that if h(α = 0) < 0 and

h(α = 1) < 0, then h is negative everywhere on the interval [0, 1]. From

(B8), h(0) ≈ −1974599.68 and h(1) ≈ −1842439.30.

Lastly, whenever θ takes on a value that produce a non-negative price,

and α and β are chosen to minimize ϑ(I,I)(0) − ϑ(D,I)(0) and ϑ(I,D)(0) −
ϑ(D,D)(0) as shown above, these expressions respectively yield 7482895/313632+

100/99 ln
(

3
2

)2
and 5067665/17424, which proves condition (a).

Proposition 3 (Mixed Strategy Equilibrium)

Having established Lemma 1 and 2, and using Table 1, a firm, say A, is

able to determine ex ante that

a. If cA < c1, then regardless of cB it is a dominant strategy to play I .

Since ϑI,IA > ϑD,IA and ϑI,DA > ϑD,DA .

b. If cA > c2, then regardless of cB it is a dominant strategy to play D .

Since ϑD,IA > ϑI,IA and ϑD,DA > ϑI,DA .

Question is: how should the firm behave if c1 < cA < c2? Now, if

cB < c1 then B will play I and therefore, since ϑD,IA > ϑI,IA , firm A should

play D . On the other hand, if cB > c1 then B will play D and therefore,

since ϑI,DA > ϑD,DA , firm A should play I . If c1 < cB < c2 then ϑD,IA > ϑI,IA

and ϑI,DA > ϑD,DA (and similarly for B, so the firms will (anti)-coordinate,

and there will be an equilibrium in mixed strategies).

But when making its decision, firm A does not observe firm B’s draw

from the cost distribution, so it must base its assessment of what is the

best strategy on its prior belief (knowing that, for cost draws in the same

region, B will be doing the same thing). So, when c1 < cA < c2 and without

observing its rival’s cost draw, A will have to formulate its strategies in a

manner consistent with its beliefs as follows.

Suppose cB < c1 with probability p1, cB > c2 with probability p2 and

c1 < cB < c2 with probability 1 − p1 − p2. Then, A can find a certain

probability φ for which its dominant strategy is I when cB < c1 and cB > c2.

However, when c1 < cB < c2, firm B formulates a similar strategy with a
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certain probability ψ. Therefore, when c1 < cA < c2 and c1 < cB < c2, firm

A must expect (I, I) with probability φψ, (I,D) with φ(1−ψ), (D, I) with

(1− φ)ψ), and (D,D) with (1− φ)(1−ψ). It is clear that whenever φ = ψ,

the firms will (anti)-coordinate.

To find φ and ψ, we maximize the expected value of the investment with

respect to φ and ψ in the following way,

max
0≤φ≤1

EAΠ = max
0≤φ≤1

{ϑI,IA (p1φ+ φψ(1− p1 − p2))

+ ϑI,DA (p2φ+ φ(1− ψ)(1− p1 − p2))

+ ϑD,IA ((1− φ)p1 + (1− φ)ψ(1− p1 − p2))

+ ϑD,DA ((1− φ)p2 + (1− φ)(1− ψ)(1− p1 − p2))}

(B9)

and

max
0≤ψ≤1

EBΠ = max
0≤ψ≤1

{ϑI,IB (p1ψ + φψ(1− p1 − p2))

+ ϑI,DB (p2ψ + ψ(1− φ)(1− p1 − p2))

+ ϑD,IB ((1− ψ)p1 + (1− ψ)φ(1− p1 − p2))

+ ϑD,DB ((1− ψ)p2 + (1− ψ)(1− φ)(1− p1 − p2))}

(B10)

Deriving the FOCs for B9 and B10 and solving for ψ and φ respectively

yields,

ψ∗ =
(1− p1 − p2)

(

ϑI,IA − ϑI,DA − ϑD,IA + ϑD,DA

)

p1(ϑ
D,I
A − ϑI,IA ) + p2(ϑ

D,D
A − ϑI,DA ) + (1− p1 − p2)(ϑ

D,D
A − ϑI,DA )

(B11)

and

φ∗ =
(1− p1 − p2)

(

ϑI,IB − ϑI,DB − ϑD,IB + ϑD,DB

)

p1(ϑ
D,I
B − ϑI,IB ) + p2(ϑ

D,D
B − ϑI,DB ) + (1− p1 − p2)(ϑ

D,D
B − ϑI,DB )

(B12)

Therefore, in the interval (c1, c2), A and B’s mixed strategies are respec-

tively (φ∗, (1− φ∗)) and (ψ∗, (1− ψ∗)).
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