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Abstract

We add to the explanatory theory of skewness showing how real options generate convex-

ity of payoffs leading to skewness in returns. We document empirically that growth option

variables are significant, positive and robust determinants of idiosyncratic skewness, over

and above previously reported determinants. We further confirm that expected long-term

idiosyncratic skewness deriving from growth options commands a negative return premium.

These results suggest a behaviorally rational transmission mechanism from real options to

stock returns through enhanced idiosyncratic skewness.
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1 Introduction

We examine active management and its effect on stock return asymmetries. Idiosyncratic

or firm-specific skewness has been shown to be priced and command a negative return

premium (Chen et al. (2001), Mitton and Vorkink (2007), Boyer et al. (2010)). Confirm-

ing results on the negative return premium of firm-specific skewness have been obtained in

settings ranging from total skewness (Chen et al. (2001)) to skewness recovered from op-

tions prices (Conrad et al. (2013)). Given the robust evidence that firm specific skewness

is both statistically important and economically relevant, an understanding of the under-

lying drivers causing convex value payoffs and skewed return distributions is paramount.

Our focus in this paper is on the specific role of real options as important determinants

of idiosyncratic skewness leading to the observed negative return premium.

Idiosyncratic skewness is presumably not priced in “symmetric” investment situations

where well-diversified investors having homogeneous rational beliefs maximize expected

utility over normally distributed asset returns (see Barberis and Huang (2005)). For firm-

specific skewness to have extra value for investors some sort of fundamental asymmetry is

needed, such as subjective beliefs (Brunnermeier and Parker (2007)), heterogenous pref-

erences (Mitton and Vorkink (2007)) or asymmetric probability weights as in cumulative

prospect theory (Barberis and Huang (2005)). Bali et al. (2011) and Kumar (2009) pro-

vide behavioral and statistical evidence on how lottery-type stocks command a negative

return premium. Kumar (2009) defines lottery stocks as having high idiosyncratic skew-

ness and volatility. Similar types of psychological and social clienteles are drawn to lottery

type stocks as to lotteries. Mitton and Vorkink (2007) report an analogous clientele effect

with investors.

Skewness is closely related to lottery-type features in both financial and real assets

and characterizes the empirically observed distribution of stock returns and other finan-
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cial time series. Several studies have shown empirically how market-related co-skewness

or total skewness command a negative return premium – Kraus and Litzenberger (1976),

Harvey and Siddique (2000), Chen et al. (2001), Bakshi et al. (2003), Mitton and Vorkink

(2007), Bali et al. (2011), Chang et al. (2013), and Green and Hwang (2012). Asymmetry

in returns manifested in the form of total skewness, co-skewness or idiosyncratic skewness

is a relevant key characteristic for market investors.

Despite its obvious importance, there are surprisingly few papers addressing the issue

of the determinants of skewness. In early work, Black (1976) and Christie (1982) found

that changes in leverage lead to an asymmetric volatility response to stock price changes.

Thus leverage and volatility differences among firms might help explain differences in

skewness. Leverage has thus been a key factor in skewness models. Investor heterogeneity

may also matter as a source of returns skewness differentials. Blanchard and Watson

(1983) suggest that bubbles and subsequent crashes can lead to negatively skewed return

distributions.

Hong and Stein (2003) argue that high trading volumes also lead to more negatively

skewed returns when investors are short-sales constrained as previously suppressed market

information comes out during market declines. Cao et al. (2002) present an information

blockage theory of sidelined investors causing skewness after price-drops and price-runs.

Chen et al. (2001) provide supporting empirical evidence that trading volume has a nega-

tive effect on skewness and that price run-ups (run-downs) are followed by more negative

(positive) skewness. They also report that past average returns are negatively associated

with skewness. Xu (2007) finds evidence of a positive association of skewness with trad-

ing volume (turnover) and a negative association with lagged average returns, size and

institutional ownership. Epstein and Schneider (2008) argue that ambiguity in informa-

tion leads to more skewness as investors react asymmetrically to good and bad news. As

smaller companies are less closely followed by analysts, they may exhibit more positive
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skewness.

In this paper we show that, after controlling for the above drivers, real options are

significant determinants of idiosyncratic skewness. Our findings contribute to the litera-

ture in several ways: (i) we show theoretically how real options lead to convex payoffs and

constitute a rationally justified key determinant of idiosyncratic skewness; (ii) we confirm

empirically that real growth options are strong determinants of idiosyncratic skewness;

(iii) we provide empirical evidence that the growth option-induced part of long-term ex-

pected idiosyncratic skewness is associated with a negative return premium; and (iv) we

uncover a behaviorally rational transmission mechanism from real options to stock returns

through the channel of idiosyncratic skewness.

Growth options represent idiosyncratic, firm-specific future contingent investment op-

portunities. Growth options have been shown to be relevant in explaining stock returns,

e.g., Anderson and Garcia-Feijóo (2006), Grullon et al. (2012), and Trigeorgis and Lambertides

(2013). However, the channel through which real options influence the market place is

not as clear. Cao et al. (2008) argue that real options are drivers of idiosyncratic volatil-

ity. However, the defining characteristic of real options (besides deriving more value with

higher volatility) is decision flexibility leading to value convexity and return asymme-

try. It is thus equally important to consider real options as determinants of idiosyncratic

skewness (asymmetry), besides being viewed as determinants of idiosyncratic volatility.

In this sense our results on the determinants of skewness are complementary to the study

of Cao et al. (2008) on the determinants of idiosyncratic volatility. In both cases real

options are seen to be important drivers of idiosyncratic characteristics of the stock re-

turn distribution that is relevant for not fully diversified investors (Mitton and Vorkink

(2007)).

Our work also complements Xu (2007) who shows that asymmetric information (re-
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lated to trading volume and turnover) leads to convexity in payoffs and return skewness.

From our perspective, the asymmetry is caused by decision flexibility and real options.

The empirical connection between real options and stock returns is strengthened and justi-

fied behaviorally by our findings on the determinants of skewness. Idiosyncratic skewness

and volatility are both key measurable variables connecting hard-to-observe real growth

options with stock returns. Many investors are attracted to lottery-type stocks with both

high idiosyncratic skewness and high volatility. We subsequently argue that real options,

by providing a more convex pay-off in the value of an actively managed firm, result in more

positively skewed returns. We thus consider real options and active firm management as

fundamental drivers of firm-specific skewness.

Essentially, an active firm manages an asset portfolio that includes two major cate-

gories of real options: (a) growth or expansion call options (e.g., sequential investments,

excess capacity, early stage investment); and (b) protective put options (contraction, de-

fault, reorganization, abandonment and delay). As demand rises beyond an upper thresh-

old an active firm with strategic flexibility can exercise its growth or expansion options

obtaining a competitive advantage in terms of enhanced market share and higher profits.

Conversely, when market demand drops below a critical level, an actively managed firm

can contract the scale of operations or restructure/reorganize obtaining downside protec-

tion. This dynamic adaptation process of an active firm creates a convex value pay-off

that enhances idiosyncratic skewness. Such protective put options reduce the downside

risk (probability of negative returns) while expansion options preserve and enhance upside

potential. Investing in active firms with such growth and contraction real options enables

investors to achieve substantial diversification benefits (downside protection) while in-

vesting in a smaller number of assets and preserving the upside potential. Such investor

preferences for enhanced idiosyncratic skewness lead to a less than fully diversified invest-

ment position and are associated with a negative return premium. We test and confirm
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our hypothesis with US stock return data during the period 1983-2011.

2 Value convexity and skewness

It may be instructive to first take an abstract view of the mathematical connection between

real options, value convexity and skewness. Let V be the value of an all-equity passive firm,

with no real options, under standard assumptions (following log-normal distribution).

Consider next an otherwise similar but actively managed firm V
′

with real protective Put

and expansion Call options attached:

V
′

= V + Put(V ) + Call(V ) (1)

From basic properties of call and put options (Black and Scholes, 1974) it can be

verified that V ′ is an increasing convex function of V since
dV

′

dV
> 0 and

d2V
′

dV 2
> 0 (see

also Figure 1). According to theorem 3.1. in van Zwet (1964), an increasing and convex

transformation of a random variable (V ) produces a more skewed random variable (V
′

).

This suggests that the skewness of the value function of an active firm with real options,

V
′

, is higher (more positive) than that of a similar passive firm without real options, V .

We next develop a more detailed representative model to show how the dynamic

adaptation process of an active firm creates a more convex value pay-off that enhances

idiosyncratic skewness. Following Kulatilaka and Perotti (1998), consider a duopoly with

two (all-equity) firms facing an inverse demand function of the form:

p(q, θ) = θ − q

where p(q, θ) is the market price as a function of total industry supply q given a uniformly

6



distributed random demand variable θ, with support [0, M ]. θ̃ represents a random shock

in the quantity demanded (that is unknown at time 0). Each duopolist firm faces a pro-

duction cost function of the form: C = V C +FC, where V C and FC are the variable and

fixed cost components, respectively. At time 0 the active firm has monopolistic access to

an investment growth opportunity and must decide whether to make a strategic invest-

ment. Making the strategic investment will confer economies of scale (via an expansion

option) which lower unit variable costs (from K to k).

Active management also allows for a more flexible production scale on the downside (a

contraction option) by lowering fixed costs (from F to f). The expansion and contraction

opportunities are a function of future demand realization. As illustrated in Figure 1 if

future demand θ increases beyond an upper demand threshold, θ∗∗, the active firm with

the strategic growth investment will exercise the expansion option and lower marginal

production costs, increasing profitability. On the other hand, in case of a negative shock

in demand, dropping below lower threshold θ∗, exercising the contraction put option

enables re-sizing the firm’s scale (lowering fixed costs from F to f) and reducing losses.

The strategic investment effectively enables the active firm to change its operating scale

and cost structure depending on the random demand shock realization, θ, exploiting

growth or contraction opportunities accordingly. Under high demand (θ > θ∗∗), to satisfy

the increased level of production, the active firm adopts a larger scale and faces higher

fixed costs F (F > f). However, given the expanded scale, the firm faces lower marginal

production costs k (k < K).Thus, its costs are F + kq when θ > θ∗∗. Conversely, if

quantity demanded drops below θ∗, the active firm can reduce size to a lower scale with

less fixed costs f (f < F ). In this case (θ < θ∗), the firm will not exercise expansion

options and will face higher marginal cost K. Its costs will thus be f + Kq, for θ < θ∗.

Figure 1 provides a graphical representation of the above reasoning. The value of the

active firm (V
′

) is again seen as the value of a passive firm (V ) in a normal demand range
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θ (demand)

V
′

(value of
active firm)

θ∗ θ∗∗

contract

f + Kq, f < F

normal

F + Kq

expand

F + kq, k < K

0

V

+ put

+ call

Figure 1: Graphical representation of the adaptive options of an active firm. For a low level of demand
(θ < θ∗) the firm can exercise a contraction option: the scale and fixed costs will be reduced to f (f < F ).
For intermediate (normal) level of demand θ∗ < θ < θ∗∗ neither option is exercised: the firm faces the
same production cost function as an identical passive firm without options. For high level of demand
(θ > θ∗∗) the firm will exercise an expansion option with economies of scale, so the firm is able to produce
at a lower marginal cost k (k < K). The cost of the passive firm under normal demand is C = F + Kq.
The expected adaptive cost of an active firm is (f + Kq) with demand scalar or probability (1 − θ

M
) of

contraction and (F + kq) with probability ( θ

M
) of expansion.
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(θ∗ < θ < θ∗∗) plus the contraction (Put) and expansion (Call) options, as in equation

(1) above. Without such strategic investment, a passive firm with rigid costs (of value V )

faces the following total production cost:

C = F + Kq (2)

with F > f and K > k.

In the following, to simplify modeling we approximate the above piece-wise linear

cost function with kinks by a smooth function. Assuming demand θ follows a uniform

distribution with support [0, M ], the active firm (of value V
′

) making such strategic

investment faces the following expected total (smooth) production costs:

C
′

=

(

1 −
θ

M

)

(f + Kq)

︸ ︷︷ ︸

(contract)

+
θ

M
(F + kq)

︸ ︷︷ ︸

(expand)

(2’)

As in Kulatilaka and Perotti (1998), an expansion (growth) option allows reduced future

cost per unit (k < K). For an active firm, we relax here the assumption of constant

production coefficients (F, K) and relate marginal and fixed costs to the actual level of

the demand shock θ. Equation (2’) presents the cost function as a weighted average of costs

in low and high demand regions, with weights equal to the probability of observing low

or high demand (θ). This adaptive cost structure is representative of an active firm with

contraction (abandonment) and expansion (growth) options. Under these assumptions,

the passive and actively managed firms will produce the following quantities, respectively:

q = 1
3

(

θ − 2K + k θ
M

+ K
(

1 − θ
M

))

q
′

= 1
3

(

θ − 2
(

k θ
M

+ K
(

1 − θ
M

))

+ K
)
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The Cournot entry threshold points are θ > θP
(

≡ K
1−1/M(K−k)

)

and θ > θA
(

≡ K
1+1/M(K−k)

)

for the passive and active firms, respectively. The ex-post duopoly net profits (or cash

flows) π and π
′

of the passive and active firms are, respectively, given by:

π =







−F if θ < θP ,

1
9

(

θ − 2K + k θ
M

+ K
(

1 − θ
M

))2
− F if θ ≥ θP .

(3)

π
′

=







−F θ
M

− f
(

1 − θ
M

)

if θ ≤ θA,

1
4

(

θ − k θ
M

− K
(

1 − θ
M

))2
− F θ

M
− f

(

1 − θ
M

)

if θA < θ < θP ,

1
9

(

θ − 2
(

k θ
M

+ K
(

1 − θ
M

))

+ K
)2

− F θ
M

− f
(

1 − θ
M

)

if θ ≥ θP .

(3’)

Equation (3’) is a generalization of the Kulatilaka and Perotti (1998) model accounting

for the downside contraction option, besides the upside growth option. We can isolate each

specific impact produced by the expansion or contraction options by imposing restrictions

on the fixed and marginal costs, as follows:

A. The case of a passive firm with no expansion or contraction options and constant

production costs (θ/M = 1) is obtained as a special case of equation 3 by imposing F = f

and K = k, resulting in:

π =







−F if θ < K,

1
9

(θ − K)2
− F if θ ≥ K.

This shows that even the value of a passive firm under competition is convex (quadratic)

in demand θ.

B. The case of a firm with only expansion (growth) option and constant production
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coefficients (θ/M = 1) is obtained by imposing F = f :

π
′

=







−F if θ < k,

1
4

(θ − k)2
− F if k ≤ θ < 2K − k,

1
9

(θ + K − 2k)2
− F if θ > 2K − k.

This confirms Kulatilaka and Perotti (1998) with no fixed costs (F = 0).

C. The case of a firm with only contraction option is obtained by imposing K = k:

π
′

=







−F
(

θ
M

)

− f
(

1 − θ
M

)

if θ < K,

1
9

(θ − K)2
− F

(
θ

M

)

− f
(

1 − θ
M

)

if θ ≥ K.

D. The more general case of an active firm with both expansion and contraction

options is given by our equation (3’) above.

It can be verified, following arguments in van Zwet (1964), that the expression for π
′

in equation (3’) in case D is a more convex transformation of that in C, which is more

convex than that in B, and in A. Hence the resulting random values for the active firm

(V
′

) with increasingly more options (D > C > B > A) should be more skewed. The

above is illustrated graphically through simulation of demand θ in Figures 2 and 3.

Figure 2 contains plots of firm net profits (or cash flows) as function of demand θ.

An active firm (case D) with such strategic investment has a competitive advantage in

terms of an enhanced market share and flexible (lower) production costs, resulting in a

more convex payoff (compared to the passive firm with no options in case A).1 As shown

in Figure 2, the presence of contraction (or abandonment) options reduces the size of

1If we assume, for simplicity, that firms enter a steady state with no further growth where capital
expenditures are equal to depreciation and net working capital is constant, the indicated profits in
equations (3) and (3’) are equal to net cash flows; we can then make use of the present value of a
perpetuity relationship and relate changes in net cash flow to changes in market equity values.
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A. Passive firm with no options
B. Firm with only expansion/growth option
C. Firm with only contraction/abandonment option
D. Actove firm with expansion + contraction options

A
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C

Figure 2: Firm profits (cash flows) as a function of demand shock θ. The higher continuous line (D)
corresponds to an active firm with both expansion and contraction options; the thick dashed line (C)
corresponds to an active firm with only contraction options, while the fine dashed line (B) corresponds
to a firm with only expansion options; finally, the dashed marked line (A) corresponds to a passive firm
without expansion or contraction options. The assumed parameters are k = 4, K = 8, f = 30, F = 80
and M = 60.

negative cash flows during low demand (C), while expansion options enhance positive

cash flows during high demand states (B). These cash flow asymmetries are reflected in

equity dynamics that enhance the skewness of stock returns.

To illustrate the impact of strategic expansion and contraction options on equity return

dynamics we simulate a series of demand shocks (θ) and determine the rates of equity

returns for the simulated series. In particular, we simulate repeated demand shocks θ over

1,000 time intervals, first extracted from the uniform distribution underlying equation (3’)

(and then using an analogous log-normal process for θ) and we determine the cash flow

distributions for the active and passive firms, respectively. Equity values are obtained

based on the cumulation of the 1,000 realizations of cash flows (assuming an initial equity

value of 50,000). The value accumulation process stops if equity becomes negative (in

which case the firm is assumed to default without incurring bankruptcy costs). Equity

returns are obtained from E(t + 1)/E(t) − 1. Stock return skewness is calculated for both
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the active and passive firms.The base-case parameters in the simulation are k = 4, K = 8,

f = 30, F = 80 and M = 60.

Figure 3 contains the densities of estimated skewness over 10,000 simulation paths.

As hypothesized, the presence of strategic expansion and contraction options increases

the skewness of equity rates of return. An increase in real options presence (intensity),

measured by cost differentials of K − k and F − f , widens the difference in skewness

distributions. A different impact is caused by expansion vs. contraction options depending

on the demand shock level θ. As demand θ increases, skewness is more affected by the

presence of expansion options. Conversely, for low values of M , the contraction option

becomes dominant. As shown in Figure 3, an expansion in demand increases average

skewness (we expect skewness to be positively related with market conditions). Plot B

shows estimated skewness densities when the demand shock instead comes from a log-

normal distribution (with mean 40 and standard deviation 5). In this case, the ratio

θ/M in equations (3’) is replaced by P(θt), where θt is a realization of the demand shock

and P(θ) is the log-normal cumulative distribution function. High (low) values of P(θt)

indicate that the quantity demanded is high (low). Again, an active firm with expansion

and contraction options exhibits higher skewness. The numerical results are robust to the

different demand distributional assumptions (shown here for uniform or lognormal).

The above convexity and skewness results are more pronounced if the firm is partly

financed by debt (e.g., via issuance of zero-coupon debt D). Leverage and limited liability

have an incremental impact on value convexity and skewness. If equity value is seen

analogous to a call option on the underlying firm asset value (V
′

) with strike price the

face value of debt D, E
′

= max(V
′

− D, 0), where V
′

is the asset value of an active all-

equity financed firm given in equation 3. The presence of leverage provides an additional

layer of convexity that further enhances skewness for a levered actively-managed firm.2

2Even for a passive firm, the value function is convex in demand θ (π ≈ θ2 from equation (3)). Growth
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Plot A. Equity return skewness under uniformly distributed θ with support [0, M = 60]
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Plot B. Equity return skewness under lognormally distributed θ ∼ LN(40, 5)
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Figure 3: This graph contains plots of the equity return skewness distribution from 10,000 simulations. The base case
parameters are k = 4, K = 8, f = 30 and F = 80. The case without contraction option is obtained by imposing k = 4,
K = 8 and f = F = 80, while the case without expansion option is obtained by setting k = K = 8, f = 30 and F = 80. If
the maximum demand shock θ increases (M = 100) expansion options have a stronger impact on skewness than contraction
options. The reverse is true for lower values of M . Plot B contains the estimated skewness densities when θ is extracted
from a log-normal distribution with mean 40 and standard deviation 5. In all plots, leverage is modelled as a call option on
the underlying company value with strike price equal to the value of debt D, i.e. Et = max(Et − D, 0). As a base case we
consider an equity financed firm with E0=50,000. The density of the leveraged firm is obtained by assuming a fixed debt
value of D=25,000.
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The above simulation results confirm that the value of an actively managed firm is

a convex function of underlying market demand, while a convex transformation through

real options skews further the return distribution to the right. The market equity returns

of an actively managed firm are more positively skewed than a comparable passive or rigid

firm. Although, as demonstrated, both expansion as well as contraction/abandonment

options contribute to increased skewness, the analysis of contraction, abandonment or

default put options might be better addressed using a sample of distressed firms (or firms

with government guarantees like systemic banks). Unfortunately we do not have reliable

and readily observable empirical proxies for these put options in a general context. We

subsequently focus our empirical analysis on the impact of expansion/growth options

using the universe of active (not-defaulted) US stocks on NYSE/AMEX/NASDAQ for

the period 1983-2011.

In what follows, we examine growth options as important determinants in the id-

iosyncratic skewness expectation model. Boyer et al. (2010) already demonstrated that

expected idiosyncratic skewness is priced. Here we add more specific evidence that ex-

pected idiosyncratic skewness directly attributed to real growth options leads to lower

stock returns once other previous factors are controlled for.

or expansion options on upside provide an additional level of convexity (special case (θ ≥ θP ) of equation
(3’) corresponding to Kulatilaka and Perotti (1998) is more convex than equation (3)). The addition of
contraction option makes the value function (equation (3’)) even more convex. Leverage adds a fourth
level of convexity. A convex transformation (four layers) leads to more a skewed distribution (van Zwet
(1964)).
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3 Sample and methodology

3.1 Data description

Our sample consists of all active US firms listed in the NYSE/AMEX/NASDAQ ex-

changes in the period 1983-2011. We focus on the period after July 1983 when NASDAQ

data is readily available and market volatility and skewness are more prevalent. There

are several reasons for this focus. Firstly, many growth stocks are traded on NASDAQ.

Secondly, computerized portfolio management increased after the start of S&P 500 index

futures trading in 1983, enhancing volatility in the market. Growth options that might

lead to more asymmetric returns and a related priced skewness factor are more significant

in the presence of increased market volatility, which has become more pronounced since

1983. Xu and Malkiel (2003) argue that idiosyncratic risk has become more important

over time as stocks listed on NASDAQ increased in number and importance after 1983.

Chan and Lakonishok (1993) report that beta was working fine until 1982, but subse-

quently stopped being significant, in line with a structural break around 1983. Finally,

many variables that are used to measure expansion or growth options are only available

in COMPUSTAT after 1983. For these reasons, we focus our analysis on the post-1983

period.

Our basic analysis uses daily holding period equity returns downloaded from CRSP.

We include ordinary common shares of firms listed on the NYSE, AMEX and NASDAQ

from 1 July 1983 to 30 June 2011. Financial firms are excluded. We require each included

stock to have at least 100 non-missing daily observations in a year. Data in CRSP is

matched univocally with COMPUSTAT using the 8-digit CUSIP code and fiscal year.

Duplicates of CUSIP-fiscal year are deleted from the sample. Tables 1 and 2 contain

descriptive statistics, including correlations, for the main variables used to explain id-
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iosyncratic skewness for the period 1983-2011.

3.2 Measuring skewness determinants

Idiosyncratic skewness is generally estimated from the residuals of time series regressions.

Two approaches are commonly used to estimate the residuals: 1) Fama & French 3 factor

model (e.g., Boyer et al. (2010), Green and Hwang (2012)); and 2) Market model with

potential inclusion of a second-order term (Mitton and Vorkink (2007), Bali et al. (2011),

Green and Hwang (2012)). In line with Harvey and Siddique (2000), we use models that

rely on market information in determining market-related and firm-specific skewness com-

ponents. We treat idiosyncratic or firm-specific skewness as that part of total skewness

that is not related to market movements and thus measure idiosyncratic skewness from

the residuals of the market model.

As real options represent firm-specific characteristics or idiosyncratic opportunities,

we examine their incremental impact on idiosyncratic skewness, measured as:

Idio-Skewi, t =
E[ǫ3

i, t]
√

E[ǫ2
i, t]

3 (4)

where ǫi, t = ri, t − (α0 + βirM, t) are the residuals of the market model. We estimate

idiosyncratic skewness using different horizons from 1 to 5 years, each period starting

from 1 July to 30 June. The market model parameters are assumed to be constant over

the horizon and expectations in equation (4) are taken on the residuals.3 As a robustness

test, we also built a skewness measure using monthly holding period returns over a period

of three years (36 monthly observations).

3For example, the two-year horizon skewness is calculated by first fitting the market model on daily
returns from 1 July in year t-2 to 30 June in year t. We then calculate the skewness as in equation (4)
of the obtained daily residuals. The estimation is repeated by moving one year ahead and maintaining
fixed the two-year window.
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We test the impact that real option drivers have on idiosyncratic skewness using

standard panel regressions with lagged regressors. We test the following models:

yi, t = αyi, t−j + x
′

i, t−j β + ui, t, i = 1, · · · , N ; t = 1, · · · , T ; j = 1, 3. (5a)

yi, t = x
′

i, t−j β + ui, t, i = 1, · · · , N ; t = 1, · · · , T ; j = 1, 3. (5b)

where yi, t represents the estimated idiosyncratic skewness for asset i = 1, · · · , N in year

t = 1, · · · , T , xi, t−j is a (K×1) vector of exogenous covariates, and β is a (K×1) vector of

unknown coefficients. The subscript j denotes the length of the lag (being equal to 1 for

the one year daily data and equal to 3 years for the monthly return case). Models (5a)

and (5b) are estimated using standard panel methods. All accounting data is lagged one

year relative to market data if the company fiscal year end is between July and December,

or two years if the fiscal year end is between January and June. This ensures that all

accounting variables are known by the market at the time considered. The following K

exogenous firm-specific variables are used to help explain individual idiosyncratic skewness

and make up the vector xi,t. Variables are described for the base case of the skewness

calculated on daily returns over a period of a year:

• Betat. This is estimated as the market loading factor calculated on daily returns

from 1 July of year t − 1 to 30 June of year t.

• Sizet = log(MEt), where MEt = P ricet × ShareOutt. Measured as the log market

value of equity, size is one of the standard Fama and French (1993) factors. It can

be argued that future growth opportunities are more likely to be enjoyed by smaller

companies. Size might thus act as an alternative proxy for future growth options,

though this may be challenged due to the possibility of also capturing leverage effects

(see Black (1976) and Christie (1982)). Size is calculated as the logarithm of stock

price at the end (or last non-missing available observation) of June of year t (P ricet)

18



times the number of shares outstanding at the end of June of year t (ShareOutt).

The main results hold if size is alternatively proxied by the logarithm of total assets

or sales.

• B/Mt = ceqt−fy/(MEt). Book to market is included as a basic Fama and French

(1993) factor potentially proxying for the existence of future growth options or for

distress (see Fama and French (1993)). Book to market is calculated as the ratio

of book value of equity in fiscal year t − fy (ceqt−fy) to the market value of equity

at the end of June of year t. The subscript fy assumes the values 1 or 2 if the

fiscal year end month is between 1 July - 31 December or 1 January - 30 June,

respectively. Chen et al. (2001) find that this variable is positively related with

skewness, probably because glamour stocks are more crash-prone.

• GOt, the growth option intensity, represents the percentage of firm market value

(MVt) that stems from future growth opportunities (GOt). It is typically esti-

mated by subtracting from the current market value of the firm (MVt) the per-

petual discounted stream (at the w.a.c.c.) of the firm’s operating cash flows under

a no-further-growth policy (e.g. see Cao et al. (2008), Trigeorgis and Lambertides

(2013)):

GOt =
MVt −

F CFt−fy(ng)

w.a.c.c.t−fy

MVt
(6)

where MVt = MEt + ltt−fy . The weighted average cost of capital (w.a.c.c.t−fy) is

calculated as CostEquity × (1 − Levt−fy) + CostDebt × Levt−fy, where the cost of

equity is estimated from the market model (or CAPM assuming a market beta equal

to 1 for all firms). Market equity premium is estimated as the average market excess

return (roughly 6%) over the treasury bill rate. The cost of debt is estimated by

applying an annual spread of 2% to the 10-year treasury bond rate. The results are

qualitatively insensitive to different spreads. FCFt−fy(ng) is the free cash flow under
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no-further-growth, i.e. firm “as is” policy. In most previous literature (Long et al.

(forthcoming), Cao et al. (2008), Trigeorgis and Lambertides (2013)) oancf from

COMPUSTAT has been used as an estimate of FCF (ng). We here adhere to a

more precise definition of free cash flow used in company valuation, adding back to

oancf the interest and assuming that under a no-growth policy capital expenditures

roughly equal depreciation. This leads to estimating FCFt−fy(ng) as oancft−fy +

xintt−fy − dpct−fy. To enable direct comparisons with previous literature we also

estimate the model with the commonly used definition of FCF (ng) as oancf in our

robustness checks. To reduce errors and the impact of year-specific contingencies

we use an average oancf over the past three years.

• CAPFIXt = capxt−fy/ppentt−fy. CAPFIX might be seen as a proxy for exercising

growth options and turning them into assets in place. If capital expenditures capture

past exercised growth options, the relationship between capital expenditures and the

value of future investment options may not be linear (see Goyal et al. (2002) and

Cao et al. (2008)). Capital expenditure intensity is measured as the ratio of capital

expenditures in fiscal year t − fy (capxt−fy) over the net value of property, plant

and equipment in the same fiscal year (ppentt−fy).

• RDt = xrdt−fy/att−fy. Research and development (R&D) intensity is a typical real

option measure that captures systematic firm efforts to cultivate or develop new

multi-stage growth options. R&D intensity is measured as R&D expenses in fiscal

year t−fy (xrdt−fy) over total assets in the same fiscal year (att−fy). Missing values

in xrdt−fy are replaced by zeros to save observations; relaxing this assumption does

not substantially change the main results.

• Turnovert. Used as a measure of investor heterogeneity (Chen et al. (2001)), turnover

is given by the ratio of average daily volume from 1 July of year t − 1 to 30 June of

year t, divided by average shares outstanding from 1 July of year t − 1 to 30 June
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of year t.

• r̄t and σt, the average daily firm (asset) return and volatility from 1 July of year

t−1 to 30 June in year t. Campbell and Hentschel (1992) and Harvey and Siddique

(1999) have shown that skewness is a time-varying firm characteristic that can be

modeled by auto-regressive processes. Blanchard and Watson (1983) suggested that

bubbles and subsequent crashes may lead to negatively skewed return distributions.

These results suggest that in modeling the determinants of skewness one should

control for endogenous market-based variables, especially lagged average returns,

volatility, and past skewness.

• Levt = ltt−fy/MVt, where MVt = (P ricet × ShareOutt + ltt−fy). Leverage captures

the financial flexibility of the firm while it may also proxy for distress. It is calculated

as the ratio of total liabilities at fiscal year t − fy (ltt−fy) to the market value of

the firm MVt. The market value of equity is given by stock price times number of

shares outstanding at the end of June of year t (P ricet × ShareOutt). The value of

debt is approximated by total liabilities ltt−fy .

• Concentrationt, measured by the Herfindahl - Hirschman Index (HHI) calculated at

the two-digit SIC industry level using sales (salet−fy). HHI is used as a proxy for

the level of competition in an industry and captures how well protected is the firm’s

strategic advantage. For firm i in year t − fy we calculate:

Concentrationi,t =

(

salei,t−fy
∑NSIC

i=1 salei,t−fy

)2

× 100

where NSIC is the total number of firms in the same 2-digit industry.

• ROAt = nit−fy/att−fy. ROAt is the return on assets in fiscal year t, where nit is the

net income in fiscal year t and att is total asset value at the beginning of fiscal year

t. ROA is the measure of the firm’s past performance.
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• MktSentt = Rmt/σm, t proxies for market up/downs or market sentiment (e.g., pes-

simism or optimism) in year t. It is given by the ratio of the average return on

the market over a period of one year to the standard deviation of market returns

from July of year t − 1 to June of year t. During downmarket or pessimism periods

the measure declines as lower (or even negative) market rates of return are realized

along with higher volatility. This variable captures general economic conditions that

impact the firm production level and proxies for demand shocks.

To avoid excessive influence of outliers for B/M, GO, CAPFIX, ROA and RD, we

remove the extreme 0.1% of observations in both tails. For comparability, the horizon

used to calculate betat, turnovert, average firm return and volatility of the daily asset

return r̄t and σt, and MktSentt, are analogously extended when skewness is calculated

over 2, 3, 4 and 5 years. When skewness is calculated on monthly returns we consider 36

monthly observations (rolled each year) from 1 July of year t − 3 to 30 June of year t.

To allow for more observations and enable direct comparison with previous literature (see

Chen et al. (2001)) we use daily skewness calculated over one year as our base case. In

the robustness section we include the results obtained for skewness calculated over longer

horizons. Table 1 contains the main descriptive statistics on these explanatory variables.

Table 2 gives the correlation coefficients of the variables included in the regression analysis.

To complete our analysis and corroborate the importance of our previous discussion

we also test whether real-options-induced expected idiosyncratic skewness is negatively re-

lated to returns. As in Boyer et al. (2010) we here focus on the long-term expectation of

idiosyncratic skewness and specifically test whether the real-options-induced expected id-

iosyncratic skewness leads to lower returns. We estimate expected idiosyncratic skewness

(ISt) using the following series of cross sectional regressions:
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ISt = α0 + β1ISt−T + β2GOt−T + β3RDt−T + β4CAPFIXt−T + β5IV (1Y )t−T + ǫt (7)

We include as explanatory variables the three main real option determinants plus

idiosyncratic volatility. IV is included in the expectations for two reasons: (1) it is a key

driver of the value of real growth options, and (2) idiosyncratic volatility and skewness

are co-determined as high firm-specific volatility attracts more active management which

influences the shape of the return distribution while active management simultaneously

influences idiosyncratic volatility. As in Boyer et al. (2010) the analysis is affected by

the choice of the horizon used for the skewness expectation. For robustness we estimate

expected idiosyncratic skewness using different lengths of the time window. In particular,

ISt is the idiosyncratic skewness calculated from 1 July in year t − T to 30 June in year t

where T = 2, 3, 4 years is the analyzed horizon; GOt−T , RDt−T , CAPFIXt−T and IVt−T

are observed at 30 June of time t − T ; and ISt−T is past (lagged) idiosyncratic skewness

calculated from 1 July in t − 2T to 30 June in t − T . Expected idiosyncratic skewness (at

year t) over future horizon t + T is estimated as:

Et[ISt+T ] = α̂0 + β̂1ISt + β̂2GOt + β̂3RDt + β̂4CAPFIXt + β̂5IV(1Y)t (8)

Once expected idiosyncratic skewness over future horizons (T ) is calculated as above,

we test its market impact on returns by running:

rt+1 = γ0 + γ1Et[ISt+T ] + ΓZt + ǫt+1 (9)

The matrix Zt contains related firm characteristics such as market beta, size, book-to-

market ratio, idiosyncratic volatility, a dummy for negative book-to-market values (dis-

23



tress) and turnover observed at 30 June in year t. Equation (9) is estimated at the

individual asset level using a series of cross-sectional and pooled regressions for each year.

4 Main empirical results

We first present basic descriptive statistics for our explanatory variables by skewness

deciles. Table 3 presents averages of the explanatory variables in each skewness decile.

We divide idiosyncratic skewness in year t in 10 deciles and calculate the cross-sectional

average of idiosyncratic skewness in each decile. Explanatory variables are observed in

the previous period and are then cross sectionally averaged depending on their skewness

classification in year t. From Table 3 it can be noted that when positive, skewness rises

almost linearly with GO and RD, but shows potential non-linearity in CAPFIX. Non-

linearity of skewness with GO and RD is also observed when skewness turns to negative

values.4

Tables 4 and 5 contain the results of the panel estimations for our daily and monthly

models at individual level (equations 5b and 5a). Standard errors are corrected for het-

eroskedasticity and cluster effects. In line with Chen et al. (2001) and Xu (2007), we find

that current skewness is negatively related to past average returns and size, but positively

associated with past volatility and book to market. In line with a real options view, the

positive association between volatility and skewness might stem from the positive rela-

tion between volatility and growth options (see Cao et al. (2008), Grullon et al. (2012)).

As in Cao et al. (2008), we also find that our real option proxies are positively related

to idiosyncratic volatility. Financial leverage, by providing a second layer of flexibility

and convexity, has an enhancing impact on idiosyncratic skewness. In line with previous

4The relation between GO, RD and skewness is weaker in this case – but Table 3 raises an interesting
issue on the determinants of negative skewness. Negatively skewed assets become lottery stocks if short-
sold.
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studies, we find mixed evidence of the impact of turnover on skewness (see Chen et al.

(2001); Xu (2007)). The impact of size (-), volatility (+) and financial leverage (+) are

also consistent with the leverage effect noted by Black (1976) and Christie (1982) and the

volatility feedback mechanisms of Campbell and Hentschel (1992). Higher market senti-

ment (+MktSent), given by the ratio of past average market return over market volatility,

is positively associated with skewness, in line with Blanchard and Watson (1983). Past

profitability measured by ROA is inversely related to skewness.

After controlling for all the above factors, the main real option variables GO and

RD are found positively and significantly related to skewness. Tables 4 and 5 confirm

that higher growth options (GO) lead to more positively skewed returns, in line with

our real options-skewness hypothesis. These results are valid in both daily and monthly

return data, with the latter exhibiting a higher explanatory power (R2 = 19.4%). The

results are also robust to different estimation methodologies and time horizons. Capital

expenditure intensity (CAPFIX), related to the exercise of past growth options, has an

inconclusive sign, potentially due to non-linearities (see Goyal et al. (2002) and Cao et al.

(2008)). Our findings indicate that growth options are not only important determinants of

idiosyncratic volatility (see also Cao et al. (2008)), but their presence significantly affects

the shape (skewness) of the return distribution. Tables 6 contains the results of pooled

panel regressions at the portfolio level (using daily data). The real option variables,

GO, RD and CAPFIX explain a significant portion (about 35%) of average portfolio

idiosyncratic skewness. The overall model explanatory power is high (R2 = 56%).

Regarding the relation between expected idiosyncratic skewness and equity returns,

Table 7 shows that, after controlling for firm-specific characteristics such as market beta,

size, book-to-market, idiosyncratic volatility, distress (negative book-to-market dummy)

and turnover, the real-options-induced expected idiosyncratic skewness, Et[ISt+T ], is sig-

nificantly negatively related with returns. In base case cross-sectional regression (model
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(1) in Table 7) we use a 3 years expectation period and measure returns as the geometric

average of the next 12 months holding period returns. We also test a similar model using

a pooled regression with returns measured monthly (model (2) in Table 7). Reinforcing

and extending results in Boyer et al. (2010), we find that real-options-induced expected

idiosyncratic skewness commands a negative return premium. Our overall results indicate

that real growth options are not only important determinants of skewness, but have an

important impact on returns.

5 Robustness results and discussion

Table 8 shows results from rerunning our statistical tests using portfolios built on deciles

based on our idiosyncratic skewness measure. We divided our idiosyncratic skewness

measure in year t in 10 equally-spaced deciles and calculated the cross-sectional aver-

age of daily idiosyncratic skewness in each decile. Explanatory variables are observed

in the previous period and are then cross-sectionally averaged depending on their skew-

ness classification in year t. Table 8 contains the results of pooled panel regressions for

each individual variable. Along with past ROA, past idiosyncratic skewness, idiosyn-

cratic volatility, size, B/M and leverage, our real option proxies GO and RD are highly

effective in explaining average skewness in each skewness decile (with R2 0.37 and 0.30,

respectively). Collectively, these results suggest that our real option variables explain an

important portion of average portfolio idiosyncratic skewness.

Table 9 confirms that our main results of Table 4 (column 4) are robust to different

time horizons. While GO loses some power as the horizon increases, RD intensity becomes

more important. There are several reasons for RD intensity having more influence over

longer horizons: i) RD investments are long term; ii) RD can generate preemptive or

first-mover advantages which translate into more convex pay-offs that enhance skewness;
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and iii) investment in RD generates future follow-on growth options.

Table 10 presents various additional robustness test results. We specifically exam-

ine how the results are affected by the estimation methodology and the construction of

real option variables. We run different panel estimation methods and used alternative

proxies for the main variables in our regression models. Table 10 shows (in column 2)

that fixed effect (FE), (column 3) random effect (RE), and (column 4) dynamic panel

procedures based on Arellano and Bond (1991) (AB) produce qualitatively similar results

as the pooled regressions (column 1) concerning the main real option variables GO and

RD. To account for the time dynamics of the estimated coefficients, column (5) reports

the time-series average coefficients of year-by-year cross-sectional regression slopes. The

results again indicate that growth option proxies are significant positive determinants of

idiosyncratic skewness.

Further, robustness tests employing alternative definitions of the GO variable, namely

setting negative GO values to zero (GO1) in column (6), using the Cao et al. (2008) mea-

surement approach (GO2) in column (7), or using the standard cash flow definition based

on oancf alone as in Long et al. (forthcoming), Cao et al. (2008) and Trigeorgis and Lambertides

(2013) (GO3) in column (8) – produce similar results as in our base case. Overall, over and

above all other variables considered in previous literature, our main real option variables

(GO and RD) are significant and robust determinants of idiosyncratic skewness.

Table 11 provides robustness checks for the expectation periods of idiosyncratic skew-

ness (2 and 4 years around base case 3 years) and return estimation period (6 months vs.

base case 12 months). The negative return premium remains significant with all these

variations.
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6 Conclusions

This paper had several objectives. First, it has shown theoretically (and via simula-

tion) how active management of firm real options results in value convexity and enhanced

skewness in equity returns. Second, it has confirmed empirically that real option variables

(GO and R&D) are key determinants of idiosyncratic skewness after controlling for other

known factors. Third, long-term forecasts of skewness induced by real options commands

a negative return premium in individual stocks and portfolios. Our findings are consis-

tent with the hypothesis that less-than-fully diversified investors, having a preference for

entrepreneurial or lottery-type investment opportunities, may be willing to accept lower

short-run average returns in exchange for more positive skewness or asymmetric lottery-

type bets. Finally, we add to the literature on growth options impacting negatively on

stock returns by showing that the channel through which this negative impact is carried

out is by shifting the shape of the return distribution as predicted by real options theory.

Firm-specific skewness has been shown to be priced and command a negative re-

turn premium. Empirically the results have been obtained using idiosyncratic skewness

(Mitton and Vorkink (2007)), expected idiosyncratic skewness (Boyer et al. (2010)), total

skewness (Chen et al. (2001)) and (risk-neutral) implied skewness recovered from options

(Conrad et al. (2013)). This paper focused on the question, what drives this economi-

cally important asymmetry in stock returns? What are the important determinants of

idiosyncratic skewness? Our main finding is that active management of real options is a

key source and driver of firm-specific skewness. Firm-specific skewness is particularly rele-

vant for under-diversified investors and clienteles drawn to lottery-type stocks (Bali et al.

(2011), Kumar (2009)).

The importance of real options to the market place is not new. Recent asset pricing

studies show that real options are priced and have a statistical connection to both stock
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returns (Anderson and Garcia-Feijóo (2006), Trigeorgis and Lambertides (2013)) and to

idiosyncratic volatility (Cao et al. (2008), Grullon et al. (2012)). In this paper, we add a

new theoretical perspective and empirical link that reveals how real options are essential

drivers of idiosyncratic skewness and through enhancing skewness command a negative

return premium.

Our analysis of real options as skewness determinants provides an important new

addition to previous explanatory theories of skewness. In prior literature skewness was

linked to leverage and volatility feedback mechanisms (Black (1976), Christie (1982), and

Campbell and Hentschel (1992)), investor heterogeneity (Hong and Stein (2003), Chen et al.

(2001) and Xu (2007)), information blockage (Cao et al. (2002)) and information ambi-

guity (Epstein and Schneider (2008)).

In establishing a theoretical link between real options and idiosyncratic or firm-specific

skewness, we follow several lines of argumentation. We provide a general mathematical

argument on how real options increase convexity of the value function that leads to in-

creased skewness based on a fundamental result by van Zwet (1964). We also develop

an economic duopoly model extending Kulatilaka and Perotti (1998) demonstrating how

active management of real options for expansion and contraction increase firm value con-

vexity and the skewness of equity returns. The effective creation and exercising of real

options is therefore at the heart of transforming random exogenous events into asymmetric

business opportunities and competitive advantage.

Building on these conceptual notions, we proceed to provide robust empirical evidence

on how real option variables, specifically R&D and growth option intensity, are strong

economic determinants of idiosyncratic skewness, over and above other determinants pre-

viously reported. Our empirical results confirm our real-options-to-skewness hypothesis

while corroborating earlier findings on other determinants of skewness. Our main find-
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ings of real options variables being significant determinants of idiosyncratic skewness are

robust, being subjected to numerous checks: decile tables and regression models, daily or

monthly returns, individual asset and portfolio tests, different time horizons, alternative

estimation methods and definitions of variables.

A couple of related findings are worth noting. Capital expenditure intensity, more

closely linked to the exercise of real options (rather than their creation), exhibits a

nonlinear relation to skewness, corroborating earlier findings by Goyal et al. (2002) and

Cao et al. (2008). A time horizon of three years gives strong results in determinants-of-

skewness and in skewness-returns association, corroborating the long term relationship

between expected idiosyncratic skewness and stock returns found by Boyer et al. (2010).

R&D intensity is more significant in longer time horizons in line with R&D proxying for

multi-stage, long-term optional investments.

Our main findings reinforce and extend the results by Boyer et al. (2010) and Conrad et al.

(2013) providing further evidence that expected idiosyncratic skewness commands a neg-

ative return premium. Specifically we show that this effect is significantly driven by real

options variables that impact on returns via the channel of skewness, i.e., we show that

the part of expected idiosyncratic skewness that is generated by real options variables

commands an incremental negative return premium, after controlling for other standard

factors.

Recent literature on lottery behavior documents that certain clienteles of investors

have a preference for lottery type stocks (Bali et al. (2011), Kumar (2009)). Relative to

this literature we add further behavioral and statistical evidence that positive idiosyncratic

skewness and tail effects related to real options lead to a negative return premium. We

contribute to this behavioral literature by demonstrating how real options provide valuable

flexibility for actively managed firms, which leads to a more convex value function and
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positively skewed returns. The resulting positively skewed returns deriving from real

options resemble lottery type features which through lottery-type investor preferences are

priced producing a negative return premium.

Consistent with the above behavioral findings we posit that actively-managed firms

with expansion and/or contraction options enable investors to obtain similar benefits as

well-diversified portfolios but with a smaller number of assets. In addition to providing

downside protection, strategic investment by an active firm preserves upside potential

via expansion/growth options. If investors have a preference for the enhanced skewness

of actively managed firms (with more upside potential during economic expansion and

enhanced downside risk protection during downturns), they might be willing to accept

lower average returns in the short term justifying a negative return premium.

In conclusion, we contribute by establishing necessary linkages at three levels. We

show that: (i) both theoretically and empirically real growth options are strong and pos-

itive determinants of idiosyncratic skewness, over and above previously reported skew-

ness determinants; (ii) the resulting growth-options-induced expected idiosyncratic skew-

ness commands a negative return premium; and (iii) a behaviorally rational transmission

mechanism from real options to stock returns operates through observable idiosyncratic

skewness and lottery type features.
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Table 1: Descriptive statistics of the idiosyncratic skewness determinants (1983 - 2011).
This table contains descriptive statistics of the variables used as determinants of skewness (equations (5a)
and (5b)). The sample period covers 1 July 1983 to 30 June 2011. The number of observations changes
depending on data availability. We report the idiosyncratic skewness measure (“Idio-Skew”) calculated
from daily data over a year. Firm-specific volatility “σ”, average rate of return “r̄”, “turnover”, “beta”
and market sentiment “MktSent” are calculated from daily data over a time period of a year. Missing
values in research and development expenses (xrd) are replaced by zeros. Details on the variable definition
and construction are contained in Section 3.2.

Variable Obs Mean Std. Dev. Min Max
Idio-Skew 112,867 0.6181 1.5722 -15.8109 15.7753
Beta 112,867 0.7610 0.6661 -9.5937 10.0938
Size 111,963 11.816 2.1387 4.6571 20.0777
B/M 97,353 0.6770 0.8492 -8.3035 10.9562
GO 68,238 0.8703 0.8043 -2.8192 11.4752
RD 97,461 0.0494 0.1108 0 1.5323
CAPFIX 95,698 0.2818 0.2174 0 2.6829
IV 112,867 0.0394 0.0295 2.28e-5 1.3156
Turnover 112,865 0.0559 0.0769 3.21e-6 4.5726
r̄ 112,867 0.0008 0.0030 -0.0257 0.1938
Lev 97,373 0.3484 0.2406 0 0.9986
Concentration 97,433 0.3621 3.7725 0 100
ROA 85,816 -0.0140 0.2415 -3.2889 0.9075
MktSent 112,867 0.0447 0.0644 -0.1841 0.2709
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Table 2: Correlation coefficients among skewness determinants (1983 - 2011). This table contains the correlation coefficients among
the variables used in equations (5a) and (5b) as skewness determinants. The variables are built using daily data from July 1983 to June 2011.
Idiosyncratic skewness “Idio-Skewt”, lagged firm-specific volatility “σt−1”, average rate of return “r̄t−1”, “turnovert−1”, “betat−1” and market
sentiment “MktSentt−1” are calculated from daily data over a period of a year. Details on the variable definition and construction are contained
in Section 3.2. Missing values in research and development expenses (xrd) are replaced by zeros.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
(1) IdioSkew 1
(2) IdioSkewt−1 0.082 1
(3) Betat−1 -0.073 -0.053 1
(4) Sizet−1 -0.204 -0.180 0.389 1
(5) B/Mt−1 0.080 -0.031 -0.171 -0.271 1
(6) GOt−1 0.110 0.113 0.045 -0.216 -0.084 1
(7) RDt−1 0.068 0.076 0.152 -0.077 -0.150 0.391 1
(8) CAPFIXt−1 -0.007 -0.026 0.154 -0.026 -0.125 0.123 0.198 1
(9) IVit−1 0.163 0.316 -0.071 -0.526 0.088 0.316 0.212 0.092 1
(10) Turnovert−1 -0.033 0.019 0.433 0.249 -0.126 0.047 0.128 0.179 0.085 1
(11) r̄it−1

-0.011 0.308 -0.028 -0.066 -0.173 0.050 0.063 -0.036 0.071 0.526 1
(12) Levt−1 0.084 -0.010 -0.195 -0.181 0.390 -0.161 -0.298 -0.287 -0.178 0.061 -0.151 1
(13) Concentrationt−1 -0.023 -0.024 0.018 0.127 -0.008 -0.036 -0.038 -0.026 -0.008 -0.051 -0.011 0.025 1
(14) ROAt−1 -0.122 -0.143 -0.021 0.220 0.045 -0.418 -0.486 -0.061 -0.031 -0.322 -0.055 -0.001 0.027 1
(15) MktSentt−1 0.006 0.028 -0.021 -0.014 -0.108 -0.001 -0.012 -0.016 -0.050 -0.095 0.114 -0.083 -0.006 0.026 1
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Table 3: Basic desccriptive statistics of explanatory variables by idiosyncratic skewness deciles. This table contains the time-series
averages of each portfolio built by dividing idiosyncratic skewness in 10 equally spaced deciles. The variables are built using daily data from
July 1983 to June 2011. Idiosyncratic skewness “Idio-Skewt”, lagged firm-specific volatility “σt−1”, average rate of return “r̄t−1”, “turnovert−1”,
“betat−1” and market sentiment “MktSentt−1” are calculated from daily data over a period of a year. Each year skewness is reclassified in 10
equally-spaced deciles and the lagged values of the covariates are cross-sectionally averaged. RD∗

t−1 indicates that missing values of the research
and development expenses (xrd) are dropped. RDt−1 has been calculated with missing values in xrd replaced by zeros. Details on the variable
definition and construction are contained in Section 3.2.

Decile Idio-Skew Idio-Skewt−1 Betat−1 Sizet−1 B/Mt−1
GOt−1 RDt−1 RD∗

t−1

1 -1.695 0.346 0.899 12.688 0.513 0.786 0.049 0.079
2 -0.280 0.347 0.837 12.703 0.585 0.732 0.037 0.066
3 0.021 0.347 0.803 12.501 0.633 0.722 0.037 0.071
4 0.204 0.427 0.782 12.250 0.657 0.770 0.038 0.073
5 0.364 0.462 0.789 12.095 0.671 0.806 0.045 0.081
6 0.529 0.508 0.788 11.884 0.684 0.843 0.051 0.087
7 0.725 0.560 0.794 11.695 0.704 0.913 0.054 0.092
8 0.999 0.625 0.779 11.510 0.704 0.959 0.060 0.099
9 1.496 0.758 0.768 11.259 0.739 1.020 0.064 0.105
10 3.753 0.835 0.685 10.899 0.841 1.101 0.071 0.118

Decile Idio-Skew CAPFIXt−1 IVt−1 Turnovert−1 rt−1(×100) Levt−1 Conc.t−1 ROAt−1

1 -1.695 0.301 0.029 0.073 0.083 0.295 0.459 0.031
2 -0.280 0.268 0.030 0.063 0.083 0.331 0.508 0.036
3 0.021 0.262 0.032 0.058 0.084 0.343 0.426 0.027
4 0.204 0.264 0.035 0.056 0.088 0.345 0.434 0.015
5 0.364 0.271 0.037 0.055 0.082 0.348 0.416 -0.001
6 0.529 0.277 0.039 0.057 0.081 0.344 0.342 -0.014
7 0.725 0.284 0.042 0.056 0.077 0.353 0.259 -0.028
8 0.999 0.290 0.044 0.060 0.082 0.358 0.310 -0.052
9 1.496 0.294 0.047 0.058 0.071 0.365 0.245 -0.073
10 3.753 0.284 0.048 0.057 0.066 0.385 0.247 -0.094
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Table 4: Panel regressions of idiosyncratic skewness determinants (daily data). This table
contains the results of the panel regressions of equations (5a) and (5b) on individual daily idiosyncratic
skewness. The dependent variable is daily idiosyncratic skewness (IdioSkewt−1) calculated from July 1st

to June 30th each year. The sample period in column (1) covers July 1983 to June 2011. The columns
contain the results from standard pooled regressions with heteroskedastic and cluster robust standard
errors. Missing values in research and development expenses (xrd) are replaced by zeros. *, ** and ***
indicate significance at the 10%, 5% and 1% level, respectively.

(1) (2) (3) (4)
Constant 2.128∗∗∗ 0.448∗∗∗ 0.208∗∗∗ 1.123∗∗∗

(53.1) (31.1) (16.6) (14.9)
IdioSkewt−1 0.076∗∗∗ 0.092∗∗∗ 0.049∗∗∗

(12.0) (13.0) (5.91)
Betat−1 0.021∗∗ -0.043∗∗∗

(2.56) -(3.87)
Sizet−1 -0.135∗∗∗ -0.078∗∗∗

-(42.9) -(15.7)
B/Mt−1 0.070∗∗∗ 0.031∗∗∗

(8.94) (2.88)
GOt−1 0.200∗∗∗ 0.075∗∗∗

(16.7) (6.36)
RDt−1 0.483∗∗∗ 0.443∗∗∗

(5.63) (5.01)
CAPFIXt−1 -0.217∗∗∗ -0.132∗∗∗

-(5.93) -(3.57)
IVit−1

12.64∗∗∗ 6.375∗∗∗

(43.5) (12.8)
Turnovert−1 -0.935∗∗∗ 0.134

-(9.08) (1.48)
r̄it−1

-81.41∗∗∗ -48.99∗∗∗

-(15.1) -(6.64)
Levt−1 0.334∗∗∗

(9.66)
Concentrationt−1 -0.001

-(0.30)
ROAt−1 -0.239∗∗∗

-(6.44)
MktSentt−1 0.828∗∗∗

(7.95)
Number of obs 97,338 67,151 99,579 66,919
F 719 143 663 220
Prob > F 0 0 0 0
R-squared 0.0467 0.0136 0.0483 0.0615
Root MSE 1.5393 1.5657 1.5408 1.5245
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Table 5: Panel regressions of idiosyncratic skewness determinants (monthly data). This table
contains the results of the panel regressions of equations (5a) and (5b) on individual monthly idiosyncratic
skewness. The dependent variable is monthly idiosyncratic skewness calculated from July 1st of year t-3
to June 30th of year t. The sample period covers July 1983 to June 2011. The columns contain the results
from standard pooled regressions with heteroskedastic and cluster robust standard errors. Missing values
in the research and development expenses (xrd) are replaced by zeros. *, ** and *** indicate significance
at the 10%, 5% and 1% level, respectively.

(1) (2) (3) (4)
Constant 1.938∗∗∗ 0.277∗∗∗ 0.142∗∗∗ 1.196∗∗∗

(40.3) (16.7) (11.2) (18.0)
IdioSkewt−3 0.097∗∗∗ 0.092∗∗∗ 0.039∗∗∗

(13.0) (10.5) (4.23)
Betat−3 0.057∗∗∗ 0.005

(8.86) (0.60)
Sizet−3 -0.126∗∗∗ -0.090∗∗∗

-(37.2) -(21.4)
B/Mt−3 0.023∗∗ 0.026∗∗

(2.43) (2.13)
GOt−3 0.183∗∗∗ 0.042∗∗∗

(11.2) (3.11)
RDt−3 0.734∗∗∗ 0.249∗∗∗

(6.69) (2.61)
CAPFIXt−3 0.079∗ 0.075∗∗

(1.78) (1.96)
IVit−3

3.426∗∗∗ 2.047∗∗∗

(31.4) (14.5)
Turnovert−3 -0.021∗∗∗ 0.010∗

-(5.09) (1.89)
r̄it−3

-8.068∗∗∗ -4.454∗∗∗

-(33.0) -(13.3)
Levt−3 0.084∗∗

(2.32)
Concentrationt−3 0.002∗

(1.69)
ROAt−3 -0.224∗∗∗

-(4.67)
MktSentt−3 0.474∗∗∗

(16.1)
Number of obs 45,715 31,455 51,185 31,383
F 608.8 92.5 715.5 201.0
Prob > F 0.0000 0.0000 0.0000 0.0000
R-squared 0.1577 0.0324 0.1410 0.1936
Root MSE 0.7369 0.7859 0.7569 0.7168
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Table 6: Pooled panel regressions of skewness determinants (skewness portfolios - daily
data). This table contains the results of the panel regressions of equations (5a) and (5b) on 20 portfolios
built with daily idiosyncratic skewness. The dependent variable is the cross-sectional average in each
quantile of the daily idiosyncratic skewness calculated from July 1st to June 30th each year. The sample
period is 1986 - 2011. All columns contain standard pooled regressions with robust standard errors.
Missing values in research and development expenses (xrd) are dropped before calculating the averages.
The explanatory variable market sentiment (MktSent) has been dropped being cross-sectionally constant.

(1) (2) (3) (4)
Constant 1.853∗ -1.423∗∗∗ -1.809∗∗∗ 3.703

(1.79) -(2.91) -(3.32) (0.94)
IdioSkewt−1 2.603∗∗∗ 2.919∗∗∗ 1.551∗∗∗

(3.52) (3.45) (2.73)
Betat−1 0.607∗∗∗ -0.922

(2.81) -(1.33)
Sizet−1 -0.331∗∗∗ -0.156

-(5.20) -(0.49)
B/Mt−1 1.315∗∗ -1.812∗

(2.44) -(1.86)
GOt−1 3.711∗∗∗ 1.284∗∗∗

(4.06) (3.20)
RDt−1 12.41∗∗ 6.254

(2.40) (1.10)
CAPFIXt−1 -8.150∗∗ -12.214∗∗

-(2.02) -(2.56)
IVit−1

34.50∗∗∗ 33.19
(3.27) (1.12)

Turnovert−1 -1.430 5.018
-(0.73) (0.49)

r̄it−1
-432.4∗∗∗ -584.7∗∗∗

-(2.93) -(2.75)
Levt−1 1.606

(0.76)
Concentrationt−1 -0.213

-(1.20)
ROAt−1 -5.238∗∗∗

-(2.80)
Number of obs 480 480 480 480
F( 4, 45710) 28 13 5 14
Prob > F 0 0 0 0
R-squared 0.4018 0.3530 0.4235 0.5643
Root MSE 1.1408 1.1852 1.1199 0.9829
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Table 7: Returns based on expected idiosyncratic skewness (1983 - 2011). This table reports
the coefficients as averages of the time series slopes (Fama and MacBeth (1973)) and pooled regressions
at individual asset level explaining returns (rt+1) using expected idiosyncratic skewness and a set of
firm-specific characteristics according to equation (9): rt+1 = γ0 + γ1Et[ISt+T ] + ΓZt + ǫt+1 where

Et[ISt+T ] = α̂0 + β̂1ISt + β̂2GOt + β̂3CAPFIXt + β̂4RDt + β̂5IV(1Y)
t

is from equation (8). The matrix
Zt contains control variables for market beta, size, book to market (B/M) ratio, idiosyncratic volatility
(IV), a dummy for negative book to market and and turnover. Model (1) contains the averages of the
time series slopes obtained by cross sectionally regressing rt+1 = γ0 + γ1Et[ISt+T ] + ΓZt + ǫt+1 every
month, with prediction period T = 3 years and rt+1 estimated as the geometric average of the next
12 month returns. Model (2) contains the coefficients obtained from standard pooled regression with
prediction period T = 3 years and rt+1 estimated as next month return. The results are estimated using
all non-financial firms annual stock returns from CRSP over the period July 1986 - June 2011. *, ** and
*** indicate significance at the 10%, 5% and 1% level, respectively.

(1) (2)
T = 3Y T = 3Y

cross-section (1Y) pooled (1M)
Const 1.560∗∗∗ 2.708∗∗∗

(6.69) (9.99)
Et[ISt+T ] -0.367∗∗ -1.201∗∗∗

-(2.26) -(11.2)
Market beta 0.118 0.473∗∗∗

(0.95) (7.45)
Size -0.078∗∗∗ -0.192∗∗∗

-(4.31) -(11.1)
B/M 0.424∗∗∗ 0.570∗∗∗

(16.9) (7.37)
IV(1Y) 10.571∗∗∗ 0.478∗∗∗

(5.00) (17.9)
Neg B/M 0.742∗∗∗ 1.172∗∗∗

(10.5) (5.46)
Turnover -4.320∗∗∗ -3.271∗∗∗

-(9.90) -(5.92)
R-squared 0.085 0.004
N 186 392,665
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Table 8: Pooled panel regressions of skewness determinants (skewness portfolios using daily data). This table contains the results
of pooled panel regressions for each individual covariate in 10 decile portfolios built using daily idiosyncratic skewness. The dependent variable
is the cross-sectional average (in each decile) of the daily idiosyncratic skewness (calculated from July 1st to June 30th each year). The sample
period is 1986 - 2011. All columns contain standard pooled regressions with heteroskedastic and cluster robust standard errors. Missing values
in research and development expenses (xrd) are dropped before calculating the averages. The explanatory variable market sentiment (MktSent)
has been dropped as being cross-sectionally constant. *, ** and *** indicate significance at the 10%, 5% and 1% level, respectively.

Constant (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) R-squared N
(1) IdioSkewt−1 -1.366∗∗∗ 3.781∗∗∗ 0.409 240

-(2.68) (3.43)
(2) Betat−1 1.951∗∗ -1.697∗∗ 0.061 240

(2.46) -(2.16)
(3) Sizet−1 8.467∗∗∗ -0.657∗∗∗ 0.241 250

(3.30) -(3.29)
(4) B/Mt−1 -1.710∗ 3.448∗∗∗ 0.200 250

-(1.88) (2.74)
(5) GOt−1 -3.574∗∗∗ 4.831∗∗∗ 0.370 240

-(3.48) (3.81)
(7) RDt−1 -2.011∗∗∗ 30.12∗∗∗ 0.300 250

-(3.03) (3.35)
(6) CAPFIXt−1 0.258 1.264 0.001 250

(0.27) (0.30)
(9) IVit−1

-2.004∗∗ 68.16∗∗∗ 0.272 240
-(2.25) (2.96)

(8) Turnovert−1 0.888∗∗∗ -4.756 0.009 240
(2.89) -(0.90)

(10) r̄it−1
0.794 -236.5∗∗ 0.013 240

(1.57) -(2.06)
(11) Levt−1 -3.213∗∗ 11.03∗∗ 0.161 250

-(2.05) (2.50)
(12) Concentrationt−1 1.383∗∗ -2.114∗∗ 0.108 250

(2.15) -(2.37)
(13) ROAt−1 0.325 -18.73∗∗∗ 0.511 250

(1.45) -(3.79)
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Table 9: Robustness of idiosyncratic skewness determinants to various horizons (daily
data). This table contains robustness results of the panel regressions of equations (5a) and (5b) on
individual daily idiosyncratic skewness, calculated over different horizons from 1 (1Y) to 5 years (5Y).
The dependent variable is daily idiosyncratic skewness calculated from 1 July to 30 June. The sample
period covers July 1983 to June 2011. The columns contain results from standard pooled regressions with
heteroskedastic and cluster robust standard errors. Missing values in research and development expenses
(xrd) are replaced by zeros. *, ** and *** indicate significance at the 10%, 5% and 1% level, respectively.

1Y 2Y 3Y 4Y 5Y
Constant 1.123∗∗∗ 1.612∗∗∗ 1.891∗∗∗ 2.030∗∗∗ 2.115∗∗∗

(14.9) (16.4) (15.4) (14.8) (12.7)
IdioSkewt−1 0.049∗∗∗ 0.063∗∗∗ 0.064∗∗∗ 0.061∗∗∗ 0.059∗∗∗

(5.91) (6.41) (6.45) (5.77) (4.17)
Betat−1 -0.043∗∗∗ -0.067∗∗∗ -0.031 -0.042 -0.107∗∗

-(3.87) -(3.60) -(1.17) -(1.20) -(2.27)
Sizet−1 -0.078∗∗∗ -0.113∗∗∗ -0.139∗∗∗ -0.146∗∗∗ -0.141∗∗∗

-(15.7) -(17.1) -(17.1) -(16.1) -(12.7)
B/Mt−1 0.031∗∗∗ 0.032∗∗ 0.044∗∗ 0.045∗ 0.055∗

(2.88) (2.08) (2.25) (1.89) (1.84)
GOt−1 0.075∗∗∗ 0.091∗∗∗ 0.087∗∗∗ 0.060∗∗ 0.038

(6.36) (5.52) (4.29) (2.36) (1.18)
RDt−1 0.443∗∗∗ 0.526∗∗∗ 0.629∗∗∗ 0.764∗∗∗ 0.982∗∗∗

(5.01) (3.95) (3.31) (3.19) (3.11)
CAPFIXt−1 -0.132∗∗∗ -0.042 -0.014 0.029 -0.025

-(3.57) -(0.84) -(0.24) (0.41) -(0.29)
IVit−1

6.375∗∗∗ 5.991∗∗∗ 5.979∗∗∗ 7.296∗∗∗ 10.265∗∗∗

(12.8) (6.35) (4.81) (5.92) (6.29)
Turnovert−1 0.134 0.453∗∗∗ 0.533∗∗ 0.352 0.040

(1.48) (2.86) (2.37) (1.31) (0.12)
r̄it−1

-48.99∗∗∗ -67.93∗∗∗ -72.69∗∗∗ -69.19∗∗∗ -76.13∗∗∗

-(6.64) -(3.42) -(3.05) -(4.22) -(3.63)
Levt−1 0.334∗∗∗ 0.425∗∗∗ 0.404∗∗∗ 0.381∗∗∗ 0.280∗∗∗

(9.66) (7.91) (6.36) (5.18) (3.17)
Concentrationt−1 -0.001 -0.001 0.001 0.001 0.002

-(0.30) -(0.26) (0.27) (0.38) (0.56)
ROAt−1 -0.239∗∗∗ -0.338∗∗∗ -0.472∗∗∗ -0.546∗∗∗ -0.524∗∗∗

-(6.44) -(6.53) -(7.34) -(6.76) -(5.12)
MktSentt−1 0.828∗∗∗ 1.678∗∗∗ 2.723∗∗∗ 1.872∗∗∗ -1.218∗∗

(7.95) (8.62) (9.7) (5.04) -(2.42)
Number of obs 66,919 62,391 55,081 45,808 36,786
F 220 174 145 106 76
Prob > F 0.0000 0.0000 0.0000 0.0000 0.0000
R-squared 0.0615 0.0732 0.0861 0.0877 0.0933
Root MSE 1.5245 1.7143 1.7307 1.7723 1.8068
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Table 10: Robustness tests of idiosyncratic skewness determinants (daily). This table contains robustness results of panel regressions of
equations (5a) and (5b) on daily idiosyncratic skewness. The dependent variable is the daily idiosyncratic skewness calculated from 1 July to 30 June each year. The
sample period covers July 1983 to June 2011. Standard errors are corrected for heteroskedasticity and cluster effects. The first column of the table contains the base case
shown in Table 4 where GO is defined as in equation (6). The second and third columns contain the results of the panel estimation with fixed (FE) and random (RE)
effects, respectively. The fourth column contains the results using the Arellano and Bond (1991) estimation for dynamic panels (AB), while the fifth column contains the
coefficients as time-series averages of cross sectional year-by-year regression slopes. The sixth column (GO1) contains the results of the pooled regression with GO values
bounded below at zero. The seventh column (GO2) contains results using the definition of GO as in Cao et al. (2008). Finally, the last column (GO3), contains the results
of the pooled regression when GO is directly calculated using the standard cash flow from operations (oancf). Missing values in research and development (xrd) expenses
are replaced by zeros. *, ** and *** indicate significance at the 10%, 5% and 1% level, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)
Pooled FE RE AB CS GO1 GO2 GO3

Constant 1.123∗∗∗ 1.931∗∗∗ 1.468∗∗∗ 7.325∗∗∗ 2.107∗ 1.108∗∗∗ 1.245∗∗∗ 1.152∗∗∗

(14.9) (11.8) (15.9) (19.5) (1.68) (14.7) (13.9) (15.2)
IdioSkewt−1 0.049∗∗∗ -0.086∗∗∗ -0.040∗∗∗ 0.015 0.041∗∗∗ 0.049∗∗∗ 0.056∗∗∗ 0.050∗∗∗

(5.91) -(11.1) -(5.52) (1.38) (4.56) (5.89) (5.37) (5.99)
Betat−1 -0.043∗∗∗ -0.018 -0.027∗∗ -0.046∗∗∗ -0.040∗ -0.044∗∗∗ -0.042∗∗∗ -0.042∗∗∗

-(3.87) -(1.30) -(2.27) -(2.78) -(1.86) -(3.91) -(3.09) -(3.72)
Sizet−1 -0.078∗∗∗ -0.147∗∗∗ -0.105∗∗∗ -0.571∗∗∗ -0.080∗∗∗ -0.077∗∗∗ -0.084∗∗∗ -0.078∗∗∗

-(15.7) -(12.3) -(16.6) -(20.0) -(8.56) -(15.6) -(14.8) -(15.7)
B/Mt−1 0.031∗∗∗ 0.067∗∗∗ 0.054∗∗∗ 0.092∗∗∗ 0.010 0.030∗∗∗ 0.034∗∗ 0.032∗∗∗

(2.88) (4.62) (4.60) (4.66) (1.12) (2.82) (2.30) (2.94)
GOt−1 0.075∗∗∗ 0.062∗∗∗ 0.075∗∗∗ 0.066∗∗∗ 0.041∗∗ 0.086∗∗∗ 0.013∗∗ 0.050∗∗∗

(6.36) (4.17) (6.02) (3.01) (2.23) (6.82) (2.26) (4.09)
RDt−1 0.443∗∗∗ 0.734∗∗∗ 0.716∗∗∗ 0.972∗∗∗ 0.235∗∗ 0.430∗∗∗ 0.552∗∗∗ 0.480∗∗∗

(5.01) (4.72) (6.85) (4.71) (2.40) (4.86) (4.74) (5.42)
CAPFIXt−1 -0.132∗∗∗ -0.193∗∗∗ -0.162∗∗∗ -0.071 -0.133∗∗∗ -0.132∗∗∗ -0.111∗∗ -0.133∗∗∗

-(3.57) -(4.03) -(4.06) -(1.24) -(3.76) -(3.57) -(2.22) -(3.59)
IVit−1

6.375∗∗∗ 2.261∗∗∗ 4.258∗∗∗ -10.323∗∗∗ 7.939∗∗∗ 6.293∗∗∗ 6.770∗∗∗ 6.667∗∗∗

(12.8) (4.06) (8.88) -(9.30) (7.40) (12.6) (11.8) (13.3)
Turnovert−1 0.134 0.349∗∗ 0.257∗∗∗ 0.499∗∗∗ -0.463∗∗∗ 0.134 0.212∗ 0.116

(1.48) (2.56) (2.64) (2.69) -(2.68) (1.47) (1.65) (1.28)
r̄it−1

-48.99∗∗∗ -21.37∗∗∗ -34.45∗∗∗ -16.65∗∗∗ -55.74∗∗∗ -48.64∗∗∗ -52.86∗∗∗ -50.30∗∗∗

-(6.64) -(5.27) -(7.33) -(2.76) -(7.45) -(6.60) -(4.60) -(6.81)
Levt−1 0.334∗∗∗ 0.859∗∗∗ 0.599∗∗∗ 1.283∗∗∗ 0.315∗∗∗ 0.335∗∗∗ 0.308∗∗∗ 0.320∗∗∗

(9.66) (11.9) (13.6) (10.5) (6.89) (9.72) (6.94) (9.32)
Concentrationt−1 -0.001 -0.002 -0.002 -0.006 0.000 -0.001 -0.001 -0.001

-(0.30) -(0.98) -(1.33) -(1.54) (0.16) -(0.32) -(0.25) -(0.34)
ROAt−1 -0.239∗∗∗ -0.076 -0.188∗∗∗ -0.005 -0.261∗∗∗ -0.230∗∗∗ -0.301∗∗∗ -0.262∗∗∗

-(6.44) -(1.64) -(4.83) -(0.10) -(5.12) -(6.19) -(6.57) -(7.13)
MktSentt−1 0.828∗∗∗ 1.025∗∗∗ 0.949∗∗∗ 0.891∗∗∗ -14.41 0.827∗∗∗ 0.913∗∗∗ 0.828∗∗∗

(7.95) (9.15) (9.30) (6.99) -(1.12) (7.94) (7.51) (7.93)
Number of obs 66,919 66,919 66,919 58,363 24 66,919 47,244 66,917
F 220.360 110.520 220.470 164.310 218.840
Prob > F 0.000 0.000 0.000 0.000 0.000
R-squared 0.062 0.248 0.0538 0.0806 0.062 0.061 0.061
Root MSE 1.525 0.146 1.524 1.520 1.525
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Table 11: Returns based on expected idiosyncratic skewness (1983 - 2011). This table
reports the coefficients as averages of the time series slopes (Fama and MacBeth (1973)) at individual
asset level explaining returns (rt+1) using expected idiosyncratic skewness and a set of firm-specific
characteristics according to equation (9): rt+1 = γ0 + γ1Et[ISt+T ] + ΓZt + ǫt+1 where Et[ISt+T ] =

α̂0 + β̂1ISt + β̂2GOt + β̂3CAPFIXt + β̂4RDt + β̂5IV(1Y)
t

is from equation (8). The matrix Zt contains
control variables for market beta, size, book to market (B/M) ratio, idiosyncratic volatility (IV), a dummy
for negative book to market and and turnover. Model (1) and (2) contain averages of the time series
slopes obtained by cross sectionally regressing rt+1 = γ0 + γ1Et[ISt+T ] + ΓZt + ǫt+1 every month, with
prediction period T = 2 and T = 4 years, respectively, and rt+1 estimated as the geometric average of
the next 12 month returns. Models (3) and (4) contain the averages of the time series slopes obtained
by cross sectionally regressing rt+1 = γ0 + γ1Et[ISt+T ] + ΓZt + ǫt+1 every month with prediction period
T = 2 and T = 4 years, respectively, and rt+1 estimated as the geometric average of the next 6 month
returns. The results are estimated using all non-financial firms annual stock returns from CRSP over
the period July 1986 - June 2011. *, ** and *** indicate significance at the 10%, 5% and 1% level,
respectively.

(1) (2) (3) (4)
T = 2Y T = 4Y T = 2Y T = 4Y

cross-section (1Y) cross-section (1Y) cross-section (6M) cross-section (6M)
Const 0.991∗∗∗ 1.720∗∗∗ 0.996∗∗∗ 1.781∗∗∗

(4.09) (6.86) (2.74) (5.06)
Et[ISt+T ] -0.786∗∗∗ -1.076∗∗∗ -0.581∗∗ -0.968∗∗∗

-(5.37) -(6.44) -(2.37) -(3.91)
Market beta 0.002 0.092 0.024 0.134

(0.02) (0.66) (0.18) (0.73)
Size -0.049∗∗∗ -0.080∗∗∗ -0.057∗∗ -0.090∗∗∗

-(2.80) -(4.21) -(2.15) -(3.25)
B/M 0.371∗∗∗ 0.447∗∗∗ 0.399∗∗∗ 0.491∗∗∗

(13.9) (20.8) (9.4) (11.6)
IV(1Y) 18.85∗∗∗ 17.815∗∗∗ 17.399∗∗∗ 18.730∗∗∗

(6.73) (6.14) (3.78) (4.49)
Neg B/M 0.692∗∗∗ 0.811∗∗∗ 0.788∗∗∗ 0.917∗∗∗

(10.9) (10.9) (8.53) (9.62)
Turnover -4.185∗∗∗ -4.250∗∗∗ -4.725∗∗∗ -4.677∗∗∗

-(9.55) -(10.10) -(6.93) -(6.88)
R-squared 0.080 0.087 0.067 0.071
N 198 174 205 181
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