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1 Introduction

This paper considers the impact of development cost uncertainty on an in-
vestor’s investment timing decision when the project in question takes time to
build and the market in which the investor operates is incomplete. Addition-
ally, the future revenue that will be generated from the project when it has
been fully developed is also uncertain.

To illustrate the applicability of my framework, I give a few examples.
Consider a real estate developer who pays to construct buildings on the land
he owns. In this case, the work in progress is a residential or commercial
property such as an apartment complex or a shopping centre. At any stage,
the developer must speculate on (i) what rental income he will earn from the
competed development and (ii) what the cost of carrying out its construction
will be. The developer will begin investing when the expected rental income is
sufficiently attractive and/or the expected construction cost is sufficiently low.
He can also decide to suspend the construction process if the expected rental
income deteriorates and/or the expected cost to completing its construction
rises. However, he cannot perfectly hedge the risk from the fluctuating project
value; in particular, the cost to completing the project has some diversifiable
risk which cannot be hedged and, thus, he faces an incomplete market.

As an alternative example, consider a pharmaceutical company considering
investing in the research and development dedicated to drug discovery for a
particular disease. Such an investment begins with research which (with some
probability) will lead to a new compound. The drug will require FDA approval
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and in order to obtain this, the pharmaceutical company must continue to
extensively test the product through carrying out phase I to III trials. If
FDA approval is obtained, then the company must commercialise the drug
by investing in a production facility as well as in marketing the drug in the
industry. Similar to the real estate example, if at any stage the expected
revenue that the drug will generate falls to a sufficiently low level and/or if
the expected cost to seeing the development through to completion rises, the
pharmaceutical company can suspend investment and, if the expected revenue
rises and/or the expected development cost falls at some later stage, it can
resume investment at the point at which it left off. The risk associated with
the cost of developing and commercialising the drug is not spanned by traded
assets and, hence, the pharmaceutical company also operates in an incomplete
market. Both the real estate developer and the pharmaceutical company could
decide to go ahead with the early stages of their respective investments, and
then temporarily halt development and wait before investing in later stages.

The investment projects that I consider in this paper are sequential be-
cause (i) each stage of the development takes time to build or complete and
(ii) during any stage the investor can temporarily halt (or permanently aban-
don) development. Hence, the optimal timing problem must be solved in a
similar manner to that considered by Majd and Pindyck [1] whereby invest-
ment occurs as a continuous flow; i.e., “each dollar spent gives the firm an
option (which it may or may not exercise) to spend another dollar (given any
arbitrary cumulative amount that has already been spent), which gives the
firm a completed project”.

2 The Model

Consider a program to invest in the research and development of some product
that takes time to build or construct. The program involves a sequence of
investment outlays which correspond to the various specific steps involved in
its development. The payoff to completing the development of the product is
uncertain and will not be received until its development is entirely complete.
This payoff is the present value of the stream of uncertain future revenue from
selling the product. I assume that once complete, it will produce a fixed flow
of output forever. For convenience, I choose the units so that the quantity of
output is one unit per year.

At this stage I assume that there are no costs to selling or storing the
product once development is complete and, hence, the total revenue flow from
selling the finished product is P = Y D(1) per year.1 Hence, without further

1I also assume at this point that there is no option to temporarily suspend or completely
abandon (i.e., sell the rights to) the product once completed. This assumption, along with
the assumption over operating costs, will be relaxed later.
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loss of generality, I let P be the exogenous stochastic variable.

I assume that the price of the product follows a geometric Brownian motion
of the form:

dP = αPPdt+ σPPdW.

The expected price grows at the rate αP , σP denotes the price volatility and
dW is the increment of a standard Brownian motion.

I assume that the fluctuations in price are spanned by the financial market.
This implies that there is a traded asset (or that it is possible to construct a
dynamic portfolio of assets) the price of which is perfectly correlated with P .

In this model I assume that the uncertainty inherent in the investment
decision is not only related to the future revenue the product will generate
for the firm, but that there is also some considerable uncertainty owing to
the cost (i.e., the amount of capital) required to complete its development.
In particular, the cost uncertainty is owing to two different types of cost risk
which arise because of the length of time it takes to generate revenue after
the initial investment payment is made. Since both types of risk affect the
investment decision of firms in important ways, both ought to be incorporated
into the analysis.

The first aspect of cost uncertainty is technical cost risk which relates to
the physical difficulty of completing a project; i.e., how much time, effort, and
materials will ultimately be required (see Pindyck [3]). This type of risk is
largely independent from the overall economy and, thus, it cannot be hedged
by the financial market. If stochastic changes in the cost to completing the
project are all due to such technical costs, then when the rate of investment
is zero, so too is the amount of technical cost risk present. Additionally, the
higher the cost to completion, the greater this type of risk. The second aspect
of cost uncertainty is known as input cost risk and relates to changes in wage
rates, cost of materials, etc. Another source of this risk is the effect of a
policy change, “such as the granting of an investment subsidy or tax benefit”
(Pindyck [2]). This risk may be partly non-diversifiable since it is likely to be
correlated with the economy. Hence, it can be partly hedged by the financial
market. If stochastic changes in the cost to completion are all due to input
costs, then even if the investor is not investing, the cost risk is still present.
This is because it arises from changes that are external to changes made by
the firm.

I let the cost to completion follow a controlled diffusion process of the form

dI = −αIdt+ h(αI , I)dWI , (1)

where αI > 0 denotes the rate of investment (so that the cost to completion
declines with ongoing investment), dWI is the increment of a standard Brow-
nian motion which is correlated to W with correlation |ρ| < 1, and hαI

≥ 0,
hαIαI

≤ 0, and hI ≥ 0, where hx = ∂h/∂x and hxx = ∂2h/∂x2.
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Since the cost to completing the project includes both diversifiable (tech-
nical and some input cost) and non-diversifiable (input cost) risk, it cannot
be completely hedged by the financial market. Therefore, the cost process is
not completely spanned by the existing assets in the economy and, hence, the
market in which the investor operates is incomplete. This is an important
point of departure from the model of Pindyck [3] because for ease of analysis
he makes the unrealistic assumption that all risk is spanned by the financial
market.

Since I assumed that the price process is perfectly spanned by the financial
market, its risk is perfectly correlated with the risk of some market asset. This
implies, therefore, that the risk associated with the cost of development is
correlated with price risk, albeit not necessarily perfectly. This is intuitive
because when a project has risk arising from two variables, the risk can be
correlated due to some common macroeconomic shocks. Therefore, I express
the risk of I in terms of the risk of P plus some additional diversifiable risk;
i.e., dWI = ρdW +

√
1− ρ2dZ. Thus, equation (1) can be re-written as

dI = −αIdt+ h(αI , I)ρdW + h(αI , I)
√

1− ρ2dZ. (2)

Equation (2) implies that stochastic changes in I can be due to technical
costs, in which case all of the risk is independent from the economy so ρ = 0,
h(0, I) = 0 and hαI

> 0, input costs, in which case h(0, I) > 0, or to both.

Since there is no revenue generated from the project until it is fully devel-
oped and all costs have been paid, the net present value of the project is given
by

V (Pτ∗ , Iτ∗) =

∫ ∞

τ̃

e−µtP (t)dt−
∫ τ̃

τ∗
e−µtαI(t)dt

=e−µ(τ̃−τ∗)Eτ̃−τ∗

[∫ ∞

τ∗
e−µtP (t)dt

]
−
∫ τ̃

τ∗
e−µtαI(t)dt

=e−µ(τ̃−τ∗)e−δP τ∗Pτ̃−τ∗

δP
−
∫ τ̃

τ∗
e−µtαI(t)dt

(3)

subject to (2). µ denotes the equilibrium rate of return from investing in
the project as determined by the market and includes an appropriate risk
premium2, and δP := µ−αP > 0 is the yield from selling the good and receiving
the cash-flows (for example, the rental yield in a real estate framework). τ ∗

denotes the time of investment in the program and τ̃ is the stochastic time of
project completion.

2It is straightforward to extend the analysis to allow for the discount rate to be stochastic
and to be expressed in terms of the risk-free rate and the Sharpe ratio of some risky market
asset which partially spans the project risk by using the no-arbitrage pricing approach (see,
for example, Thijssen [4]). However, this would be at the expense of parsimony and no
additional insight will be gained for the issue we investigate in this paper.
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Similar to Pindyck [3], I assume that there is a maximum rate, k, at which
the firm can productively invest and, hence, 0 ≤ αI(t) ≤ k. Furthermore, at
the time the product is fully developed, I(τ̃) = 0.

Returning to equation (2): I adopt the specification of Pindyck [3] by
letting h(αI , I) = καν

I I
1−ν for ν ∈ [0, 1/2]. This specification ensures that (i)

the value of the investment opportunity, V (P, I), declines as the actual cost
to completing the development rises, (ii) the instantaneous variance of dI is
bounded for all I < ∞ and tends to zero with I, and (iii) if the firm invests at

the maximum rate k until the project is complete,
∫ τ̃

t
kds = I(t) (cf. Pindyck

[3] for the proof).

If stochastic changes in I are due to pure input cost risk, then it must be
the case that h(0, I) > 0. This can only hold if ν = 0. Thus, if only input cost
risk is present, h(αI , I) = κI. This would imply equation (2) becomes

dI = −αIdt+ ρκIdW + κI
√
1− ρ2dZ. (4)

On the other hand, if only technical cost risk is present, then ν = 1
2
. Fur-

thermore, (essentially) all of this risk is diversifiable and uncorrelated with the
market. Thus, intuitively, if all cost volatility is owing to technical cost risk,
then ρ = 0. Hence, equation (2) becomes

dI = −αIdt+ κ
√
αIIdZ. (5)

To allow for both types of cost risk to be present, I combine equations (4) and
(5) into a single equation to give3

dI = −αIdt+ ρβIdW + γ
√

αII(1− ρ2)dZ. (6)

The specification given by (6) is slightly ad hoc in the sense that if β = 0, then
this implies that only technical cost risk is present. It further implies that all
of the risk associated with the cost is diversifiable and, hence, ρ = 0. However,
as Pindyck [3] points out, input cost risk “may be partly non-diversifiable”.
Therefore, there is some diversifiable risk which is owing to input costs which
is not accounted for when ρ = 0. On the other hand, when γ = 0, then all
risk is non-diversifiable implying ρ = 1. Since only input costs are associated
with non-diversifiable risk, then all risk associated with the cost is owing to
input cost risk. The issue surrounding ρ = 0 is not important. In particular,
it is useful to specify the cost equation in this way so that we can identify
input cost risk separate from technical cost, and vice versa. A more general
specification will be attempted towards the end of the paper, but
this will lead to more cumbersome technicalities.

3Note that the parameters β and γ respectively represent the input cost and technical
cost risk. They are not necessarily equal when both types of uncertainty are present. Hence
I replace κ with β and γ
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As previously mentioned, the market for this investment project is incom-
plete and, hence, risk-preferences for the investor must be introduced. I assume
that his utility function displays constant relative risk aversion (CRRA) so that
U(y) = yη, for 0 < η ≤ 1. His problem is to choose an investment time τ ∗ so
that his expected discounted utility from the completed investment payoff is
maximised. Thus, the investor must solve the following problem:

sup
αI(t)

sup
τ∗≥0

E0

[
e−ζτ∗U [V (Pτ∗ , Iτ∗)] | P0 = P ; I0 = I

]
= sup

αI(t)

sup
τ∗≥0

E0

[
e−ζτ∗

(
e−µ(τ̃−τ∗)e−δP τ∗Pτ̃−τ∗

δP
−

∫ τ̃

τ∗
e−µtαI(t)dt

)η
]
,

(7)

where ζ denotes the investor’s subjective discount rate.

3 Model Solution

Letting F̃ (P, I) denote the value of the entire investment opportunity, standard
dynamic programming techniques imply that the Bellman equation associated
with the developer’s utility maximising problem is given by

1

2
σ2
PP

2F̃PP + αPPF̃P +
1

2
β2ρ2I2F̃II + βρσP IP F̃PI − ζF̃

+ sup
αI

{1
2
γ2αI(1− ρ2)IF̃II − αIF̃I − αI} = 0.

(8)

Equation (8) is linear in αI implying that the rate of investment which max-

imises F̃ (P, I) is either 0 or the maximum rate, k, at which the firm can
productively invest; i.e.,

αI =

{
k for 1

2
γ2(1− ρ2)IF̃II − F̃I − 1 ≥ 0

0 otherwise.
(9)

In other words, the problem has a bang-bang solution. Therefore, equation (8)
has a free boundary at a point P ∗, such that αI = k for P ≥ P ∗ and αI = 0
otherwise. Similar to Majd and Pindyck [1], I assume that if no investment is
being made, any capital which has been previously installed does not decay.
Thus I denote the value of the investment program in the region where P ≥ P ∗

by F (P, I) and the value of the program for P < P ∗ by f(P, I). F (P, I) and
f(P, I) satisfy the following PDEs:

1

2
σ2
PP

2FPP + αPPFP +
1

2
β2ρ2I2FII + βρσP IPFPI − ζF

+
1

2
γ2k(1− ρ2)IFII − kFI − k = 0.

(10)
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and

1

2
σ2
PP

2fPP + αPPfP +
1

2
β2ρ2I2fII + βρσP IPfPI − ζf = 0. (11)

Note that the solution to equation (10) is the value of the investment pro-
gram while investing; i.e., while development is taking place. It represents
the expected PV of the completed project during this time, plus the option
to abandon its development to avoid losses should P fall or I rise in the fu-
ture. The solution to equation (11) is the option to invest in the project (when
development is not occurring) if and when P increases and/or I falls in the
future.

These equations satisfy the following boundary conditions:

f(0, I) = 0, (12)

F (P, 0) =

(
P

δP

)η

, (13)

and

lim
P→∞

F (P, I) = lim
P→∞

(
P

δP
e−µτ̃ +

k

µ

(
e−µτ̃ − 1

))η

. (14)

Equation (12) implies that when the revenue from the completed project is
zero, the value of the investment program to the risk averse investor is also
zero. Equation (13) says that when the product is fully developed and all costs
have been paid, the value of the project tends to the utility that the investor
derives from the revenue he obtains from sales. Finally, equation (14) states
that as the value of the completed product becomes very large relative to the
costs of development, the value of the option to suspend investment during
the development stage becomes negligible and the value of the project to the
manager is simply the utility obtained from investing in the project which will
be carried through to completion.

As well as the boundary conditions, equations (10) and (11) satisfy the
following value-matching and smooth pasting conditions at the free boundary,
P ∗:

1

2
γ2(1− ρ2)IFII(P

∗, I)− FI(P
∗, I)− 1 = 0, (15)

FP (P
∗, I) = fP (P

∗, I), (16)

and
FI(P

∗, I) = fI(P
∗, I). (17)

Condition (15) follows from (9) and essentially implies that F (P ∗, I) = f(P ∗, I).
Hence, I refer to it as the value-matching condition.

Equation (11) has the analytical solution

f(P, I) = B

(
P

I

)φ1

,
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where B is some constant and φ1 is the positive root of the quadratic equation

Ψ(φ) = (σP − βρ)2φ2 + (2αP − σ2
P + β2ρ2)φ− 2ζ = 0.

Hence

φ1 =
σ2
P − 2αP − β2ρ2

2(σP − βρ)2
+

1

2(σP − βρ)2

√
(2αP − σ2

P + β2ρ2)2 + 8ζ(σP − βρ)2.

(18)
The positivity of φ1 ensures that condition (12) is satisfied.

Conditions (15) through (17) imply

FP (P
∗, I) = − I

P ∗FI(P
∗, I) (19)

which is the free-boundary condition which must be adhered to.

It is not possible to obtain an analytical solution for (10) and, thus, it
must be solved numerically in conjunction with (19) using a finite difference
approximation. See Appendix A for details.

4 Results
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Appendix

A Finite Difference Transformation

Equation (10) is transformed by letting F (P, I) = e−ζI/kH(W, I) where W =
lnP . This yields

1

2
σ2
PHWW +

(
αP − 1

2
σ2
P − ζ

k
βρσP I

)
HW

+
1

2

(
β2ρ2I + γ2k(1− ρ2)

)(
HII − 2

ζ

k
HI +

ζ

k
H

)
I

+ βρσP IHWI − kHI − keζI/k = 0.

(A.1)

The boundary conditions (13) and (14) as well as the free-boundary condition
(19) are also transformed accordingly and become, respectively,

F (P, 0) = H(W, 0) =

(
1

δP
eW

)η

, (A.2)

lim
W→∞

HW (W, I) = lim
W→∞

[
η

δP
eW+(ζ−µ)τ̃

(
eW−µτ̃

δP
+

k

µ

(
e−µτ̃ − 1

))η−1
]
, (A.3)

and

HW = I

(
ζ

k
H −HI

)
(A.4)

Since the rate of investment is bang-bang, then when the firm invests and the
payoff from completion is infinitely large relative to the development cost, then
the stochastic time of project completion is given by τ̃ = I/k. In solving for
the model numerically, it is necessary to make use of this fact.

I adopt the explicit form of the finite difference method and I let H(W, I) =
H(i∆W, j∆I) ≡ Hi,j for −a ≤ i ≤ m and 0 ≤ j ≤ n.

Now we make the following finite-difference substitutions in equation (A.1):

HW ≈ Hi+1,j −Hi−1,j

2∆W

HWW ≈ Hi+1,j − 2Hi,j +Hi−1,j

(∆W )2

HI ≈
Hi,j+1 −Hi,j−1

2∆I

HII ≈
Hi,j+1 − 2Hi,j +Hi,j−1

(∆I)2

HWI ≈
Hi+1,j+1 −Hi+1,j−1 −Hi−1,j+1 +Hi−1,j−1

4∆W∆I
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which gives(
1 +

(j − 1)∆I

k

[
(j − 1)∆I

ζβ2ρ2

k
+ γ2ζ(1− ρ2) +

βρσP

∆W

])
Hi,j

=

(
p+ − (j − 1)A

(
1 +

k

ζ∆I

))
Hi+1,j−1 +

(
p− + (j − 1)A

(
1 +

k

ζ∆I

))
Hi−1,j−1

+
(
p0 +

ζ(j − 1)∆I

2k2
(2 + ∆I)

[
(j − 1)∆Iβ2ρ2 + γ2k(1− ρ2)

] )
Hi,j−1

+ (j − 1)
∆I

k∆W
βρσPHi+1,j −∆Ieζ(j−1)∆I/k.

(A.5)

where

p+ =
∆I

2k∆W

(
σ2
P

∆W
− 1

2
σ2
P + αP

)
,

p− =
∆I

2k∆W

(
σ2
P

∆W
+

1

2
σ2
P − αP

)
,

p0 = 1− σ2
P∆I

k(∆W )2
.

A =
(∆I)2

2k2∆W
ζβρσP

Note that in deriving equation (A.5), I use the fact that

HI =
Hi,j −Hi,j−2

2∆I
=

Hi,j −Hi,j−1

∆I

by definition, to eliminate Hi,j−2.

The terminal boundary condition becomes

Hi,0 =

(
ei∆W

δP

)η

(A.6)

and the upper boundary condition becomes

Hm+1,j = 2∆W
[ η

δP
em∆W+(ζ−µ)(j∆I)/k

(
em∆W−µ(j∆I)/k

δP
+

k

µ

(
e−µ(j∆I)/k − 1

))η−1 ]
+Hm−1,j

Substituting this latter expression for Hm+1,j and Hm+1,j−1 in equation (A.5)
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(by setting i = m) yields(
1 +

ζ(j − 1)∆I

k2

[
(j − 1)∆Iβ2ρ2 + γ2k(1− ρ2)

])
Hm,j

=
(
p+ − (j − 1)A

)
2∆W

η

δP
em∆W+(ζ−µ)(j−1)∆I/k

(
em∆W−µ(j−1)∆I/k

δP
+

k

µ

(
e−µ(j−1)∆I/k − 1

))η−1

+
(
p+ + p−

)
Hm−1,j−1

+
(
p0 +

ζ(j − 1)∆I

2k2
(2 + ∆I)

[
(j − 1)∆Iβ2ρ2 + γ2k(1− ρ2)

] )
Hm,j−1

+ (j − 1)
η∆I

δPk
βρσP e

m∆W
[
e(ζ−µ)(j∆I)/k

(
em∆W−µ(j∆I)/k

δP
+

k

µ

(
e−µ(j∆I)/k − 1

))η−1

− e(ζ−µ)(j−1)∆I/k

(
em∆W−µ(j−1)∆I/k

δP
+

k

µ

(
e−µ(j−1)∆I/k − 1

))η−1 ]
−∆Ie(j−1)∆Iζ/k.

(A.7)

Finally, the free boundary condition becomes

Hi∗,j =

(
j∆W

k
(ζ∆I − k) + 1

)
Hi∗−1,j + j∆WHi∗−1,j−1. (A.8)
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