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ABSTRACT 
 

Due to the complexities of solving PDEs, a general assumption regarding real options is to 

discard time-dependency. Nevertheless, this assumption is not necessarily realistic, considering 

that people tend to simplify problems by self imposing maturity dates.  

 

To study this phenomenon, the value of a compounded American option is compared considering 

two different exercise rules, using either (1) fixed dates under which a decision must be made, or 

(2) establishing a fixed lead time after an option exercise where an investor cannot exercise its 

claim over the asset. These values are then computed using numerical methods, in order to 

calculate under which circumstances it is worthwhile to establish limited timeframes to 

maximize a project’s value.  

 

  



INTRODUCTION 

 

Behavioral economists have long recognized the fact that people do not always act as predicted 

by economic theory. In particular, studies by Tversky and Kahneman (1986) have shown that 

people’s decisions are prone to simplification and to biases on how the information is presented 

(a phenomenon known as framing effect).  

 

These bounds on human rationality also apply to how costly decisions are made. Instead of 

recognizing the inherent flexibility of making decisions at any moment, people tend to impose 

expiration dates in order to simplify the decision making process. This goes from major choices 

such as getting married, to trivial choices, such as starting a diet.  

 

The objective of this paper is to analyze how different exercise rules can affect the value of a 

project under uncertainty. To this end, a project which is perpetual claim on an underlying asset 

  is considered, subject to two different exercise rules: (1) either considering fixed dates under 

which a decision must be made, or (2) establishing a fixed lead time after an option exercise 

where an investor cannot exercise its claim over the asset. Landing this to an example, this is the 

choice a university makes between considering a rolling admissions system for receiving 

graduate applicants compared to establishing a fixed deadline for application. Or the choice one 

makes between establishing a fixed number of visits to see your parents in a year compared to 

establishing a minimum time span between visits. 

 

MODEL 

 

The project’s value depends on an underlying asset   that follows a GBM motion process 

                , where  ,   and    represent the instantaneous drift, instantaneous 

volatility and Weiner process, respectively.  

 

To model the case of fixed dates under which a decisions must be made, the project is modeled 

as a compound American option with a fixed maturity date of T. In case of early exercise at 

   , the project owner receives the value of the asset S minus the exercise price I, together 

with a new claim on the underlying asset after the maturity date T (discounted to t). On the other 

hand, modeling the exercise rule as a minimum lead time between options, a perpetual 

compound American option is considered with the same exercise price I. However, in this case, a 

fixed lead time of T once the option is exercised, in order to regain the claim over S.  

 

It is important to emphasize at this point that this stochastic process ensures that both projects 

share a common lower bound of zero (when S reaches the sinking point S = 0) and a common 

upper bound (when      , given by the discounted cash flow of exercising the option at the 

beginning of each year 
  

   
 

 

 
.  



Using Ito’s Lemma to determine the value of the project F for the first case, the following partial 

differential equation in terms of t and S is reached, assuming the project’s owner is risk neutral:  

 

 

 
                                               (1) 

 

Considering that both projects (with fixed maturity dates and fixed lead times) possess the same 

dynamics, it must be the border conditions that differ. In the case of considering a fixed maturity 

date of T, the project’s border conditions are given by:  

 

                         (2) 

                                        (3) 

                  
                         (4) 

         (5) 

 

The first condition shows that, if the final expiration date has been reached, the option for that 

year must be exercised. However, besides this payoff, a renewed claim on the underlying asset is 

establish for the following year, and must be included in the payoff at T. The second and third 

conditions are the value matching and smooth pasting conditions in case the option is exercised 

prior to its expiration date. Regarding this condition, it is important to emphasize that the option 

can be exercised only once per period. Hence, the renewed claim over the underlying asset is 

activated after T, which explains the second expression in equation (3). Finally, the final 

equation indicates that S = 0 is a sinking point due to the nature of the GBM process.  

 

On the other hand, if a perpetual American option with a fixed lead time of T is considered, the 

project value in this case solely depends on the value of S. Hence, the project’s value dynamics 

in (1) change to an ordinary differential equation given by:  

 

 

 
                                 (6) 

 

And the boundary conditions in this case correspond to the value matching and smooth pasting 

conditions when exercising the option and the sinking point at S = 0:  

 

                            (7) 

                
               (8) 

       (9) 

  



MODEL RESOLUTION 

 

In order to solve both alternatives, different resolution techniques are considered:  

 

For the perpetual fixed maturity date option, a numerical method technique must be used, given 

that it is a partial differential equation with boundary conditions that depend on the value 

function itself. In this case, the Longstaff-Schwartz Least Squares Method (LSM) technique is 

used iteratively within the following algorithm:  

 

Algorithm: Modified LSM to estimate value function of perpetual fixed maturity date option 

  

1. Initialize value function                                             

 

Do while                     for some                           

2. Perform LSM for each                         to determine        .  

Use       in estimating early exercise payoffs.  

Exit Do  

 

3. Output:                                            

 

In order to avoid covering a large support for  , we restrict ourselves to cases where the drift of 

the stochastic process (   is arbitrarily small. 

 

For the compound American option with lead time, this project value can be solved using 

traditional techniques for ordinary differential equations. The chosen resolution (for the moment) 

relates to Adkins and Paxson (2012) approach in evaluating analytically American perpetual 

compound options.  

 

CURRENT STATE 

 

The LSM algorithm for this model has already been implemented and tuned by comparing 

results with the American put options calculated in Longstaff and Schwartz (2001).  The iterative 

LSM algorithm is currently being tested under different parameters of   and   in order to map 

the regions where it is more valuable to establish fixed maturity dates compared to establishing 

fixed lead times. This analysis is to be completed by March. 
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