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The Choice of Stochastic Process in Real Option

Valuation II: Selecting Multiple Factor Models

Abstract

The stochastic process choice plays a central role in real option valuation and

it can have an impact not only on the project value but also on the investment

rule. The first studies on real options used one-factor models such as Geomet-

ric Brownian Motion (GBM) and Mean Reversion Models (MRM) to represent

uncertainties in the valuation modeling. Selecting the most appropriate model

is not always a trivial issue, and besides statistical tools, in general, theoretical

considerations are taken for this task. In order to generate more realistic models,

in the last decades many authors have presented papers proposing the combi-

nation of different kinds of stochastic processes creating multiple factor models.

Although these models can be more realistic, the task of selecting among many

multiple factor models is more difficult than in case of one-factor models. This

paper discusses the choice of multiple factor models in real options valuation,

and the main statistical tools and theoretical considerations that can be used for

this task.

Key words: stochastic process, real options valuation, multiple factor models,

model choice

JEL codes: C15, C53, G13, M21.
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1 Introduction

The choice of a stochastic process is an issue of great relevance in the assets valuation

modeling aiming to represent uncertainties related to investments. In the case of real

options it can have an impact not only on the project value but also on the investment

rule (Dixit & Pindyck 1994; Schwartz 1997).

Earlier studies on financial options (Black & Scholes 1973; Cox, Ross & Rubin-

stein 1979) and real options (Brennan & Schwartz 1985; McDonald & Siegel 1985 and

1986; Paddock, Siegel, & Smith 1988) assumed Geometric Brownian Motion (GBM)

for the underlying asset. For valuation of commodities, it is common to use Mean

Reversion Models (MRM) (Bhattacharya 1978; Brennan & Schwartz 1985; Dixit &

Pindyck 1994), assuming that commodity price might behave randomly in short term

but tends to converge to an equilibrium level in the long run reflecting the marginal

cost of production.

The task of determining the most appropriate process for the underlying stochastic

variables is usually not a trivial question and, in some cases, analysts realize that these

uncertainties have elements of more than one type of process. In order to generate

more realistic models, several authors proposed models with multiple factors that com-

bine different kinds of processes (Schwartz 1997; Pindyck 1999; Dias & Rocha 1999;

Schwartz & Smith 2000). Although the use of these models might increase the accuracy

to the asset valuation, it is not straightforward to select the appropriate multi factor

model. Moreover, real options typically have a feature that allows exercise at any time

before maturity. Thus, valuation of real options requires numerical methods. In the

case of one or two-factor models, one can use the finite difference or tree methods to

solve corresponding partial differential equations. However, in the case of models with

more than two factors, one has to resort to special Monte Carlo approaches such as

the least square Monte Carlo method suggested in Longstaff and Schwartz (2001).

This paper discusses the choice of stochastic process in real option valuation and

useful tests and considerations to resolve this task: Dickey Fuller Test, Variance Ratio

Test, Q-Q plots, autocorrelation, likelihood ratio test, Akaike information criterion,

Bayesian information criterion, Bayes factors, direct calculation of model probabili-

ties, deviance information criterion, out-of-sample or cross validation, in-sample errors,

hedging errors and sensitivity analysis. We also present a set of empirical examples

using real datasets and some simple real option applications in order to discuss the

effect of stochastic process choice in the analysis.

The paper is structured as follows. Section 2 presents a bibliographical revision of

stochastic processes focusing on multiple factor models applied to real option analysis.

In Section 3 we describe some statistical tools that can be used to select the model.
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Section 4 presents some empirical applications, and we conclude in Section 5.

2 Multiple Factor Models in Real Options Theory

GBM is the most popular stochastic model used not only in financial derivatives (Black

& Scholes 1973; Cox, Ross & Rubinstein 1979) but also in real options analysis (Bren-

nan & Schwartz 1985; McDonald & Siegel 1985, 1986; Paddock, Siegel, & Smith 1988).

Its mathematical simplicity that allows to obtain analytical solutions for asset valua-

tion and small number of parameters to calibrate can be considered the main reasons to

explain its popularity. In other situations, when the uncertainties in prices depend on

an equilibrium level, such as in case of commodities and interest rates, it is debated if

the use of GBM would be appropriate (Bhattacharya 1978; Brennan & Schwartz 1985;

Dixit & Pindyck 1994). In case of commodities such as oil, copper, sugar and ethanol,

it is usual to assume that the price is driven by a mean reversion component, which

makes the prices to behave randomly in short term and converge to the equilibrium

level associated to the marginal cost of production in the long run.

The task of selecting GBM or MRM in order to represent the main uncertainties

involved in a valuation is usually not a trivial issue. Besides statistical diagnostic tools

such as Dickey Fuller Test (Dixit & Pindyck 1994) and Variance Ratio Test (Pindyck

1999), some theoretical considerations such as the economic theory and lifetime of

assets (Ozorio, Bastian-Pinto & Brandão 2012) can be useful. Nevertheless, in many

cases, analysts realize that these uncertainties have elements of more than one process.

This has motivated many authors to consider multiple factor models.

One of the pioneer works that presented a multiple factor model was Merton (1976),

where GBM and Poisson process are mixed as

dSt

St

= (α− λk) dt+ σdz + dqt. (1)

Hereafter, St is the price of a financial asset at time t; dz is a Wiener increment; and

qt is a Poisson process with the mean number of events per unit time λ and percentage

change in price ϕ − 1 if the Poisson event occurs. The uncertainty about the size

and direction of the jump is represented by random variable ϕ − 1 with the mean

k = E[ϕ − 1]. That is, dqt is a Poisson process increment that takes a value ϕ − 1

with probability λdt and zero with probability 1− λdt, i.e. E[dqt] = λkdt. The model

parameters α and σ represent the drift and volatility parameters respectively. Here,

dqt, dz and ϕ are assumed to be independent. This model was used for stocks where

the effect of common news in the stock prices is represented by GBM while the effect of

rare events corresponds to a Poisson jump. Using a compensated Poisson process where
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the jumps are non-systematic and the size of jumps is from a lognormal distribution,

Merton (1976) derived a closed form formula for European options.

Another work that presents a multiple factor model with jump diffusion process is

Dias & Rocha (1999), where the authors proposed a combination of Poisson process

and MRM to represent the stochastic behavior of oil prices in real options valuation as

dSt

St

= [η(S̄ − St)dt− λk]dt+ σdz + dqt, (2)

where η is a speed of reversion parameter; S̄ is the equilibrium level to which the process

reverts in the long run. Here, E [dSt/St] = η(S̄ − St)dt because k = E[ϕ− 1]. In this

model, similarly to Merton (1976), the common news would cause marginal changes in

oil prices, whereas abnormal events (such as crisis, wars and economic booms) would

cause discrete jumps. The jumps can be systematic, which does not allow to obtain a

risk neutral portfolio, or non-systematic, which allows the use of contingent claims.

There are also many papers proposing the combination of MRM and GBM in or-

der to represent the stochastic behavior of commodity prices; see Gibson & Schwartz

(1990), Schwartz (1997), Pindyck (1999), and Schwartz & Smith (2000). These papers

claim that besides MRM factor, price processes of some commodities may also have a

stochastic upward trend factor. In practical terms, this trend factor would tend to in-

crease the equilibrium level to which the process reverts in the long run as time passes.

These increases would have additional motivations to momentary mismatches of sup-

ply and demand (captured by MRM) and they would be caused by the progressive

exhaustion of natural resources and incremental costs related to new requirements of

environmental laws, among other issues. At the same time the improvements in the ex-

ploration and production technologies can impose a downward trend of the commodity

prices.

Gibson & Schwartz (1990) proposes a two-factor model for pricing financial and

real assets contingent on the price of oil, in which the factors are the spot price of oil

that follows a GBM and the instantaneous convenience yield that follows a MRM. As

explained by the authors, “the notion of convenience yield, viewed as a net “dividend”

accruing to the owner of physical commodity at the margin, has already proven to drive

the relationship between future and spot prices of many commodities.” Nevertheless, in

order to justify the assumption of stochastic convenience yield the authors postulate

that “the theory of storages posits an inverse relationship between the level of inven-

tories and the net convenience yield which suggests that a constant convenience yield

assumption will only hold under very restrictive assumptions.” In Gibson & Schwartz

(1990) model, it is assumed that the spot price of oil St and the net convenience yield
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δt follow a joint diffusion process

dSt/St = µdt+ σ1dz1,

dδt = κ(α− δt)dt+ σ2dz2,
(3)

where µ is the drift parameter of oil price process; σ1 is the volatility parameter of oil

price process; dz1 and dz2 are Wiener increments; α is the equilibrium level to which the

convenience yield process reverts in the long run; κ is the speed of reversion parameter

of convenience yield; σ2 is the volatility parameter of convenience yield process. Here,

dz1 and dz2 are correlated and E[dz1dz2] = ρdt, where ρ denotes the correlation coeffi-

cient between the two Wiener increments. In order to calibrate the parameters of the

MRM (convenience yield process) and the correlation the authors used the seemingly

unrelated regression model in conjunction with unrestricted regression model which

was used to calibrate the parameters of GBM (oil spot price process). The risk pre-

mium of convenience yield was estimated exogenously using computational numerical

techniques.

Schwartz (1997) considered three different models for commodity prices with appli-

cations to commodity derivatives and commodity production assets valuation. The first

model is one-factor model where the log of the price is a MRM. The second model has

two stochastic factors and it is similar to the model developed by Gibson & Schwartz

(1990) where the convenience yield follows a MRM while the price of commodity fol-

lows a GBM. In the third model, in addition to the stochastic commodity price and

convenience yield, the author also considered the risk free rate as stochastic (following

a MRM). The corresponding model for risk neutral porcesses is

dSt = (rt − δt)Stdt+ σ1Stdz
∗
1 ,

dδt = κ(α∗ − δt)dt+ σ2dz
∗
2 ,

drt = a(m∗ − rt)dt+ σ3dz
∗
3 ,

E[dz∗1dz
∗
2 ] = ρ1dt, E[dz∗1dz

∗
3 ] = ρ2dt, E[dz∗2dz

∗
3 ] = ρ3dt,

(4)

where a is the speed of reversion of the risk free rate; m∗ is the equilibrium level to

which the risk free rate reverts in the long run. The difficulty with implementation of

the commodity price models is that some factors are not directly observable. Often,

even the spot price of the commodities is not observable. Other kinds of variables, such

as the instantaneous convenience yield, are even harder to estimate. On the other hand,

futures prices of commodities are negotiated in many currencies and easy to observe.

Schwartz (1997) derived state-space representations of the proposed models and applied

Kalman filtering approach with the maximum likelihood method to estimate model

parameters for copper, oil and gold. The analysis presented a strong evidence of mean
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reversion component in copper and oil prices, but not in gold prices. It also points

that the investments tend to be delayed if the mean reversion component is neglected

in the real option analysis.

Pindyck (1999) analysed the price behavior of oil, coal and natural gas using 127-

year time series and proposed, based on the historical performance, alternative ways for

stochastic modeling of these commodity prices. The author comments that it would

be ideal to be able to explain the price behavior of these commodities in structural

terms by the movement of supply and demand in the market and the variables which

determine them. Nevertheless he ponders that the structural models are not appro-

priately applicable to long term forecasts due to the difficulty related to explanatory

variable forecasts of the models. As a result, the long run forecasts of energy commod-

ity prices are made many times assuming that these prices grow on fixed taxes in real

terms, in order to reflect the depletion of these natural resources reserves. Typically

in such cases, additionally to the drift, stochastic shocks are incorporated in order to

reflect the future prices uncertainties, which in practical terms would correspond to

assumption a random walk with drift or a GBM for the prices. Alternatively, in many

cases it is assumed that in short run the prices may wander randomly due to the mo-

mentary pressures of supply and demand, but in the long run they tend to converge

to their production marginal cost, which would mean that prices follow a MRM. The

identification and choice of the process which best represents the price behavior of such

commodities have serious implications in the project valuation, mainly in cases when

the real options are being considered in the projects. The Variance Ratio Tests applied

to the price series suggested the presence of mean reversion components, despite the

difficulty in rejecting the unit root (which would be similar to difficulty in rejecting

the GBM). Therefore, at first, the author proposes a mean reversion model where the

mean has a quadratic deterministic trend in order to incorporate the increase in time

of the production marginal cost of commodities

dxt = [−γ(xt − α0 − α1t− α2t
2) + α1 + 2α2t]dt+ σdz. (5)

Here xt is the log of commodity price; α0, α1, α2 are the parameters of the quadratic

trend of the log prices; and σ is the volatility parameter. Later, the author extended the

model so that the level and slope could fluctuate stochastically, and proposed Kalman

filter as the adequate approach to the parameter calibration.

Schwartz & Smith (2000) proposed a model with two stochastic factors χt and ξt

(correlated and unobservable) to describe the behavior of commodity prices. The sum

of these factors forms the log of commodity prices lnSt = χt+ξt. The first factor, χt, is a

MRM with null mean reflecting the short run deviations of prices, caused by momentary
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mismatches of supply and demand of the commodities. The second factor, ξt, represents

the long run tendency of prices, influenced by the progressive exhaustion of natural

resources and incremental costs related to new requirements of environmental laws,

among other issues. Differently from other multiple factor models, this one does not

consider the stochastic convenience yield factor, nevertheless the authors commented

that it is equivalent to Gibson & Schwartz (1990) with an appropriate calibration.

Specifically, the evolution of χt and ξt is given by the following model

dχt = −κχtdt+ σχdzχ,

dξt = µξdt+ σξdzξ,

E[dzξdzχ] = ρdt,

(6)

where κ is the mean reversion parameter of short deviations; σχ is the volatility pa-

rameter of the short run changes in prices; µξ is the drift parameter of the long run

price tendency; σξ is the volatility parameter of the long run price tendency; ρ is the

correlation parameter of the two factor increments. The authors estimated the param-

eters by fitting futures prices of commodities using state-space approach with Kalman

filter method.

3 Methods for selecting stochastic processes

Different approaches have been suggested for valuation of real options. The real op-

tion analysis is more complex than standard option pricing in financial markets. The

difficulties come from the facts such as the asset underlying the option may not be

a tradable asset; the investment project can have controllable or uncontrollable cash-

flows; the project can be or cannot be actively managed; for overview of these issues,

see e.g. Sick and Gamba (2005). In general, the evolution of the underlying asset in

real time is modelled by some stochastic process (referred to as real process) but eval-

uation of the fair price of financial derivatives driven by this underlying is done under

the risk adjusted process (referred to as risk neutral process). Roughly speaking, there

are two types of models for pricing derivatives: mark-to-market models and spot price

models. In mark-to-market models, the modeller fits the risk neutral process to match

exactly a set of market instruments traded today such as today’s prices of futures and

vanillas. In spot price models, we fit both the real and risk neutral processes to the

historical data (e.g. observed futures and vanilla options over some period of time),

i.e. we do not fit exactly the market instruments exactly on any specific trading date.

It is important to note that one can assume different mark-to-market risk neutral

processes that will match some liquid instruments exactly but will produce different
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prices for illiquid derivatives. Also, the model parameters estimated to match say

futures curve for a specific trading date will have to change for another trading date

due to the change in futures curve. Without entering into further debate, modelling of

both the real process and risk neutral process of the underlying are important for real

option valuation and we believe that spot models are more appropriate. In this section,

after some discussion on spot price and mark-to-market models we present methods

that can be used for model diagnostic, model selection and model assessment.

3.1 Mark-to-market models

A simple example of mark-to-market model is geometric Brownian motion with time

dependent drift and volatility, i.e. risk neutral process

dSt/St = µ(t)dt+ σ(t)dz∗t , (7)

where z∗t is the standard Brownian motion, µ(t) is calculated to match futures curve,

σ(t) is calculated to match vanilla options. Specifically, for this model, the futures

price at t = 0 with maturity T is F (0, T ) = S0 exp(
∫ T

0
µ(τ)dτ) and thus

µ(t) =
1

t

d ln(F (0, t)/S0)

dt
.

Another example, more relevant to modelling commodities is presented in Clewlow

and Strickland (1999), where the assumed risk neutral model for futures is

dF (t, T ) = F (t, T )σe−α(T−t)dz∗t , (8)

which is used to derive the corresponding spot model for St = F (t, t)

dSt

St

= α(µ(t)− lnSt)dt+ σdz∗t , (9)

µ(t) =
∂ lnF (0, t)

∂t
+ lnF (0, t) +

σ2

4
(1− e−2αt).

This model will match today’s market futures curve exactly because the mean reverting

level in spot price is a function of time derived from the futures curve F (0, t). Vanilla

prices can be easily calculated using Black-Scholes formula with the variance replaced

by 1
2
σ2(1− exp(−2α(T − t)))/α because lnST is normally distributed and thus vanilla

options prices can be used easily to estimate σ and α.

Note that time dependent drift µ(t) derived from the current futures curve F (0, t)

cannot be used for another trading date due to the change in futures curve between

trading dates in real time. Generally speaking, traditional statistical approach cannot

be used to validate this type of model because there is no observation/measurement
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errors between observed and model predicted prices. However, one can validate hedging

strategy, i.e. calculate difference between replication portfolio and instrument (hedging

error) using historically observed prices and compare the models using, for example,

the mean squared error for the hedging error.

3.2 Spot price models

In general, in spot price models, we assume that spot price St is some function of

underlying state variables Yt that can be observable or not observable. Then we have

to assume a stochastic processes for Yt; these are typically modelled as continuous time

Ito processes in real time

dY
(i)
t = µ(i)(Yt, t)dt+ σ(i)(Yt, t)dzi, (10)

where µ(i)(Yt, t) and σ(i)(Yt, t) are the drift and volatility of Y
(i)
t that can be functions

of the underlyings Yt and time t, and E[dzidzj] = ρijdt. The risk neutral process which

is used to value derivatives (i.e. options, futures, etc) driven by Yt is obtained from

no-arbitrage considerations. In general, it can be written as

dY
(i)
t = (µ(i)(Yt, t)− λ(i)(Yt, t)σ(Yt, t))dt+ σ(Yt, t)dz

∗
i , (11)

where λ(i)(Yt, t) is the risk premium that can be function of Yt and time t, and

E[dz∗i dz
∗
j ] = ρijdt. One can consider adding Poisson jumps to the above processes;

also stochastic volatility can be one of the unobserved factors.

Two-factor model. The well known Schwartz and Smith (2000) two-factor model for

commodity futures assumes that the log spot price of a commodity is lnSt = ξt + χt,

where χt is unobservable short-term deviation in prices and ξt is an unobservable long-

term equilibrium price level with the following real processes

dχt = −κχtdt+ σχdzχ,

dξt = µξdt+ σξdzξ,

E[dWχdWξ] = ρdt.

(12)

One can add a seasonality component f(t) so that lnSt = ξt + χt + f(t). Then, the

corresponding risk neutral process used to value futures and options is

dχt = (−κχt − λχ)dt+ σχdz
∗
χ,

dξt = (µξ − λξ)dt+ σξdz
∗
ξ ,

E[dz∗χdz
∗
ξ ] = ρdt,

(13)
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where λχ and λξ are the risk premia that typically assumed to be constant but in

general can be functions of χt and ξt. If the risk premia are linear functions of state

variables, then the price of the future contracts with maturity T is

F0,T = E∗[ST ] = exp(ξ0 +B(T )χ0 + A(T )), (14)

where expectation is calculated under the risk neutral process. A(T ) and B(T ) are

simple functions of time. Given that log spot is normally distributed, A(T ) and B(T )

functions are easily calculated; for details see Schwartz and Smith (2000).

Remark 3.1 It is important to note that the real process can be mean reverting while

risk neutral is not mean reverting and vice versa.

Three factor model. A popular extension of the above two-factor model is adding

extra factor. Namely allowing drift of the long term factor to be stochastic itself

dχt = −κχtdt+ σχdzχ,

dξt = µtdt+ σξdzξ,

dµt = γ(µξ − µt)dt+ σµdzµ,

E[dzχdzξ] = ρχξdt, E[dzχdzµ] = ρχµdt, E[dzµdzξ] = ρµξdt.

(15)

Risk neutral processes are obtained by including risk premia into the drift terms. If risk

premia are linear functions of the state variables then the price of the future contracts

with maturity T becomes

F0,T = E∗[ST ] = exp(Bξ(T )ξ0 +Bχ(T )χ0 +Bµ(T )µ0 + A(T )), (16)

where expectation is calculated under the risk neutral process and all functions of time

A(T ), Bµ(T ), Bξ(T ) and Bχ(T ) are easily calculated in closed form.

Multi factor affine models. In general, if the stochastic risk neutral model for the

underlying variables Yt = (Y
(1)
t , . . . , Y

(M)
t ) is exponentially affine model, i.e. drifts and

covariances in (11) are linear functions of Yt, and log spot price is a linear function

with respect to Yt, then the futures price can always be calculated as

FT,t = E∗[ST ] = exp(B1(T − t)Y
(1)
t + . . .+BM(T − t)Y

(M)
t + A(T − t)),

where functions of time A(T − t), B1(T − t), . . . , BM(T − t) are calculated from the

system of ODEs.
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State-space representation. In general, spot price multi factor models can be for-

mulated as a state-space model

Yt = g(Yt−1, εt); state equation, (17)

Xt = h(Yt, ϵt); space/measurement equation, (18)

where g(·) and h(·) are some functions, Xt = (Xt,1, . . . , Xt,n) are observations on

the trading date t (e.g. futures, vanillas, etc), εt and ϵt are the vectors of serially

independent normally distributed errors with zero mean and some covariances. In the

case of the above two/three factor models, state and space equations are linear in Yt

and in error terms and can be written in the form

Yt = a+GYt−1 + εt, (19)

lnFt = dt + cYt + ϵt, (20)

where Ft = (Ft,T1 , . . . , Ft,Tn) are observed futures prices at trading date t; a and ϵt are

M dimensional vectors and G is M ×M matrix; dt and ϵt are n-dimensional vectors

and ct is n×M matrix. Using Kalman filter procedure, one can calculate the density of

the observed data (so-called likelihood) and fit the model using frequentist of Bayesian

inference methods as described in the following sections; for application examples, see

e.g. Schwartz & Smith (2000), Schwartz (1997). For a detailed discussion of state-space

models and Kalman filter, see Harvey (1989). In the case of nonlinear relationships

and non-Gaussian errors, one can try nonlinear Kalman filter or particle filter Monte

Carlo methods; see Peters et al (2012)

The modeller should choose the model (i.e. the number of factors and model pa-

rameters for the risk neutral and real processes) and fit the model parameters to the

observed data. In general, fitting can be done using the frequentist or Bayesian ap-

proaches. Using calibration results for different models, the user can make the model

choice based on standard statistical criteria. Note that here, we aim to validate both

the real process and risk neutral process of the underlying variables.

3.3 Frequentist approach

Fitting model parameters using data via the frequentist approach is a classical problem

described in many textbooks. Under the frequentist approach a modeller says that

parameters are fixed while their estimators have associated uncertainties that typically

converge to zero when a sample size increases. The most popular approach to fit

the parameters of the assumed model is the maximum likelihood method. Given the
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model parameters θ = (θ1, θ2, . . . , θK), assume that the joint density of data X =

(X1, X2, . . . , Xn) is f(x|θ). Then the likelihood function is the joint density f(x|θ)
considered as a function of parameters θ, formally defined as

ℓx(θ) = f(x|θ). (21)

The maximum likelihood estimators θ̂MLE = θ̂(X) of the parameters θ are the

values of these parameters that maximize the log-likelihood function ln ℓx(θ). Under

the suitable regularity conditions, as the sample size increases, MLEs converge to the

true value and are distributed from the K-variate normal distribution NK(·) as
√
n(θ̂

MLE

− θ) → NK

(
0, [I(θ)]−1

)
. (22)

Here, [I(θ)]−1 is the inverse matrix of the expected Fisher information matrix whose

matrix elements are typically approximated by the observed information matrix

Î(θ̂)km = − 1

n

∂2 ln ℓx(θ)

∂θk∂θm

∣∣∣∣
θ=θ̂

. (23)

That is, standard errors (and covariances between errors) of θ̂
MLE

are estimated by

covariance matrix n−1I(θ)−1. For precise details on regularity conditions and proofs,

see Lehmann (1983, Theorem 6.2.1 and 6.2.3); these can also be found in many other

books. Though very useful and widely used, these asymptotic approximations are

usually not accurate enough for small samples, that is the distribution of parameter

errors can be materially different from normal and MLEs may have significant bias.

Typically, maximisation of the likelihood (or minimisation of some distances in

other methods) must be done numerically. Popular numerical optimisation algorithms

include simplex method, Newton methods, expectation maximisation (EM) algorithm,

and simulated annealing.

Example 3.1 Consider geometric Brownian motion real process

dSt/St = µdt+ σdWt, (24)

observed at discrete equally spaced times t0, t1, . . . , tn i.e.

lnSi = lnSi−1 + (µ− σ2/2)δt+ σ
√
δtϵi,

where δt − ti − ti−1 and ϵi are iid from the standard normal distribution. Then the

likelihood of return data Ri = ln(Si/Si−1), i = 1, . . . , N is

ℓ(µ, σ) ∝
N∏
i=1

1

σ
exp

(
− 1

2σ2δt
(Ri − (µ− 1

2
σ2)δt)2

)
.
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Maximizing ln ℓ(µ, θ) with respect to µ and σ gives the following MLEs

σ̂2 =
1

Nδt

N∑
i=1

(Ri −R)2, µ̂ =
1

δt
R +

1

2
σ̂2, R =

1

N

N∑
i=1

lnRi.

Example 3.2 As an another example, consider the mean reverting real time process

dSt = (ω − θSt)dt+ σdWt,

observed at discrete equally spaced times t0, t1, . . . , tn, i.e.

Si = Si−1ρ+
ω

θ
(1− ρ) + vϵi, v2 =

1

2θ
(1− ρ2).

Then the likelihood of Si, i = 1, . . . , N is

ℓ(ω, θ, σ) ∝
N∏
i=1

1

v
exp

(
− ϵ2i
2v2

)
.

Maximizing ln ℓ(ω, θ, σ) with respect to (ω, θ, σ) gives the following MLEs

ρ̂ =
1

det

(∑
i

Si

∑
i

Si−1 −N
∑
i

SiSi−1

)
,

µ̂ =
1

det

(∑
i

Si−1

∑
i

SiSi−1 −
∑
i

S2
i−1

∑
i

Si

)
,

det =
∑
i

Si

∑
i

Si −N
∑
i

S2
i .

Using the above estimators, calculate v̂2 = 1
N

∑
i ϵ̂

2
i and finally θ̂ = − ln ρ̂/dt, ω̂ =

µ̂θ̂/(1− ρ̂), and σ2 = 2θ̂v̂2/(1− ρ̂2).

For a general multifactor models the likelihood is not so easy to calculate. However,

in the case of state variables from Gaussian distribution and linear measurement equa-

tion, i.e. linear state-space model (19), the likelihood can be calculated using Kalman

filter recursion. In particular, using Kalman filter procedure, one can calculate the

probability density function of Ft for given Ft−1, i.e. f(Ft|Ft−1). Then the likelihood

of all data is

ℓF1:T
(θ) =

T∏
t=1

f(Ft|Ft−1), (25)

where θ are models parameters (drift, volatility, correlations and risk premia). Once

the likelihood function is calculated, the parameters can be estimated using maximum

likelihood method with numerical optimization. One can also use Bayesian approach

with Markov chain Monte Carlo (MCMC) methods described in the next section. In

the case of nonlinear relationships and non-Gaussian errors, one can try nonlinear

Kalman filter or particle filter Monte Carlo methods, see Peters et al (2012), but this

goes beyond the purpose of this paper.
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3.4 Bayesian approach

There is a broad literature covering Bayesian inference and its applications; for a

good introduction, see e.g. Berger (1985). In the Bayesian approach, both data and

parameters are considered to be random. A convenient interpretation is to think that

parameter is a random variable with some distribution and the true value (which is

deterministic but unknown) of the parameter is a realisation of this random variable.

Consider a random vector of data X = (X1, X2, . . . , Xn) whose density, for a given

vector of parameters θ, is f(x|θ). Then the joint density of the data and parameters

is

f(x,θ) = f(x|θ)π(θ) = π(θ|x)f(x), (26)

where π(θ) is the density of parameters (a so-called prior density); π(θ|x) is the density
of parameters given data X = x (a so-called posterior density); f(x,θ) is the joint

density of the data and parameters; f(x|θ) is the density of the data given parameters

θ, i.e. it is a likelihood function ℓx(θ) = f(x|θ); f(x) is the marginal density of X.

If π(θ) is continuous, then f(x) =
∫
f(x|θ)π(θ)dθ and if π(θ) is a discrete, then the

integration should be replaced by a corresponding summation.

Using (26), the posterior density can be calculated as

π(θ|x) = f(x|θ)π(θ)/f(x) ∝ f(x|θ)π(θ). (27)

Here, f(x) plays the role of a normalisation constant and the posterior can be viewed

as a combination of prior knowledge (contained in π(θ)) with information from the

data (contained in the likelihood f(x|θ)). Using the posterior π(θ|x), one can easily

construct a probability interval for θ to contain the true value with the required prob-

ability, which is the analogue for confidence intervals under the frequentist approach.

Sometimes the posterior density can be calculated in closed form, but in general, one

should use Gaussian approximation or MCMC methods.

Gaussian Approximation for Posterior. For a given data realisation X = x,

denote the mode of the posterior π(θ|x) by θ̂. If the prior is continuous at θ̂, then a

Gaussian approximation for the posterior is obtained by a second-order Taylor series

expansion around θ̂:

ln π(θ|x) ≈ ln π(θ̂|x) + 1

2

∑
i,j

∂2 ln π(θ|x)
∂θi∂θj

∣∣∣∣
θ=θ̂

(θi − θ̂i)(θj − θ̂j). (28)

Under this approximation, π(θ|x) is a multivariate normal distribution with the mean

θ̂ and covariance matrix
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Σ = I−1, (I)ij = −∂2 lnπ(θ|x)
∂θi∂θj

∣∣∣∣
θ=θ̂

. (29)

In the case of improper constant priors, this approximation is comparable to the Gaus-

sian approximation for the MLEs (22). Also, note that in the case of constant priors,

the mode of the posterior and the MLE are the same. This is also true if the prior is

uniform within a bounded region, provided that the MLE is within this region.

Once the posterior density π(θ|x) is found, for given data X, one can define point

estimators of θ. The mode and mean of the posterior are the most popular point

estimators. The median of the posterior is also often used as a point estimator for θ.

Sometimes there is no prior knowledge about the model parameter θ, or we would

like to rely on data only and avoid an impact from any subjective information. In this

case we need a noninformative prior (sometimes called vague prior) that attempts to

represent a near-total absence of prior knowledge. A natural noninformative prior is

the uniform density

π(θ) ∝ const for all θ. (30)

If parameter θ is restricted to a finite set, then this π(θ) corresponds to a proper

uniform distribution. However, if the parameter θ is not restricted, then a constant

prior is not a proper density (since
∫
f(θ)dθ) = ∞). Such a prior is called an improper

prior . It is not a problem to use improper priors as long as the posterior is a proper

distribution.

With respect to multi-factor models, once the likelihood is derived (e.g. the Kalman

filter likelihood for linear models (25)), then one can use the Bayesian approach. Pos-

terior cannot be found in closed form but various MCMC methods can be used to get

samples from the posterior. The easiest to implement is Metropolis-Hastings algorithm

which is a universal algorithm used to generate a Markov chain {θ(1),θ(2), . . . } with

a stationary distribution π(θ|x). It has been developed by Metropolis et al (1953) in

mechanical physics and generalised by Hastings (1970) in a statistical setting. Given

a density π(θ|x), known up to a normalisation constant, and a conditional proposal

density q(θ∗|θ), the method generates {θ(1),θ(2), . . . } using the following algorithm.

1. Initialise θ(l=0) with any value within a support of π(θ|x);

2. For l = 1, . . . , L

(a) Set θ(l) = θ(l−1);

(b) Generate a proposal θ∗ from q(θ∗|θ(l));
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(c) Accept proposal with the acceptance probability

p(θ(l),θ∗) = min

{
1,

π(θ∗|x)q(θ(l)|θ∗)

π(θ(l)|x)q(θ∗|θ(l))

}
, (31)

i.e. simulate U from the uniform distribution function U(0, 1) and set θ(l) =

θ∗ if U < p(θ(l),θ∗). Note that the normalisation constant of the posterior

does not contribute here;

3. Next l (i.e. do an increment, l = l + 1, and return to step 2).

3.5 Model diagnostic checking

Once the model parameters are calibrated, the model assumptions should be checked.

Typical assumptions include independence and normality of the model residuals. For

example, for linear state space model (19), one should check that error terms εt and ϵt

are serially independent and are from the standard normal distribution. For this task,

the following statistical methods are often used.

• Unit root testing. In general, unit root test is defined for autoregressive process

of the order k. Here, for simplicity we consider k = 1, i.e. the model

xt = αxt−1 + δt,

where δt are serially independent normal variables. Unit root testing is testing

of null hypothesis that α = 1. If |α| < 1, then time series xt is stationary. If null

hypothesis is rejected, then we can estimate α by some fitting procedure such as

maximum likelihood. There are many tests for unit root such as Dickey-Fuller

test and augmented Dickey Fuller tests. One can also perform Bayesian inference

approach and estimate the posterior for α.

• Q-Q plots. It is also common to check quantiles of the sample (y-coordinate)

against model assumed quantiles (x-coordinate), this (x, y) plot is referred to as

Q-Q plot. If model assumption is correct then the points of the plot should be

close to x = y line. For example, if we check that x1, . . . , xN are from the standard

normal distribution, then we plot the sample order statistics x(1), . . . , x(N) against

the quantiles of the standard normal distribution yi = F−1
N ((i − 0.5)/N), i =

1, . . . , N . If the assumption of normality is valid then correlation R between yi

and xi should be close to one. Formal percentage points for the R2 for samples

from normal distribution is given in Shapiro and Francia (1972). For example

for N = 200, Pr[R2 < 0.987] = 0.05. One can also apply popular goodness of fit

tests including Kolmogorov-Smirnov, Anderson-Darling and chi-square tests.
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• Autocorrelation. In addition to visual inspection of the model residuals, it

is useful to monitor the serial correlation. For a given sample x1, . . . , xN , the

autocorrelation at lag k is estimated as

ÂCF(k) =
1

Nσ̂2

N−k∑
i=1

(θi − µ̂)(θi+k − µ̂), (32)

where µ̂ and ŝ2 are the mean and variance of a sample x1, . . . , xN . Of course, it is

biased estimate because we use sample estimators µ̂ and ŝ2, and model parameter

point estimators to calculate the residuals, but for large N and consistent point

estimators it will converge to the true autocorrelation. It is possible to estimate

the variance of the autocorrelations due to the finite sample. For example, if

xi are iid, then for large N , ÂCF(1), . . . , ÂCF(m) are iid normal variables with

zero mean and variance 1/N . That is, autocorrelations should be within bounds

±1.96/
√
N with 0.95 confidence. This is usually used to check if residuals are

iid. It is also a good idea to check absolute residuals. Often, returns in financial

time series exhibit small autocorrelations while absolute returns have significant

autocorrelations. This is typically an indication of time dependent volatility and

can be removed by GARCH models for volatility if required depending on time

horizon of the model use.

3.6 Model Selection

Given several competing models that passed diagnostic check, the modeller should

decide which model to be used. Here, one can use the following procedures depending

on the calibration approach selected to fit the model. Typically, under the frequentist

approach, the modeller takes likelihood ratio tests and Akaike Information Criterion;

under the Bayesian approach, the modeller often calculates the Bayes factors and

Deviance Information Criterion. These are briefly described below.

• In-sample errors Once the statistical model parameterized by θ is fitted to a

data sample, we can calculate the difference between model predicted and ob-

served values in the data sample. Typically one calculates the following quantities

between observations Xt and predicted values Xpred
t = E[Xt|X1, . . . , Xt−1; θ̂]:

– squared correlation coefficient/coefficient of determination/R-squared (R2),

(Corr[Xt, X
pred
t ])2; larger value indicates better model;

– mean squared error (MSE), E[(Xt − Xpred
t )2]; lower value indicates better

model;
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– Root mean square error (RMSE),
√

E[(Xt −Xpred
t )2]; lower value indicates

better model;

– mean absolute percentage error, E[|Xt − Xpred
t |/Xt]; lower value indicates

better model.

Here, the model parameters estimated θ̂ are obtained using the full dataset X1:T .

• Likelihood Ratio test. It is a statistical test comparing two models. The test

statistic for the null model with parameters θ̂(0) and alterative model with θ̂(1)

is

LR = −2 ln
(
ℓ(θ̂(0))/ℓ(θ̂(1))

)
, (33)

where ℓ(θ̂(0)) and ℓ(θ̂(1)) are the likelihoods of the models. The distribution of

statistic LR is chi-squared distribution with degrees of freedomm1−m, wherem0

and m1 are the number of parameters in the null model and alternative model

respectively. The models should be nested, i.e. more complex model can be

reduced to a simpler model via constraints on the parameters.

• Akaike Information Criterion (AIC). It is a measure of the relative goodness

of fit of a statistical model introduced by Akaike (1983):

AIC = 2m− 2ℓ(θ̂), (34)

where θ = (θ1, . . . , θm) are model parameters,m is the number of parameters, and

ℓ(θ) is likelihood function for the data maximized at θ̂. Point estimators θ̂ are

the maximum likelihood estimators. The best model within a set of K candidate

models for the data corresponds to the smallest AIC∗ = min(AIC1, . . . , AICK).

Note that AIC penalises for the increase in the number of parameters while re-

wards for goodness of fit. The quantity exp((AIC∗−AICk)/2) can be interpreted

as the relative likelihood of the ith model. It looks similar to the likelihood ratio

test if the number of parameters in the candidate models is the same but note

that likelihood ratio test is used for nested models. To account for the number

of observations N used to fit the model, the criteria is adjusted as

ÃIC = 2m− 2ℓD(θ̂) +
2m(m+ 1)

N −m− 1
. (35)

• Bayesian Information Criteria. Bayesian information criterion (BIC) or

Schwarz criterion is a criterion for model selection among a finite set of mod-

els. It is closely related to AIC and is an asymptotic result for the data from the

exponential family distribution. Formally it is given by
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BIC = −2 ln ℓD(θ̂) +m lnN. (36)

The model with the lower value of BIC is the one to be preferred. Note that

there is no requirement for compared models to be nested.

• Bayes factors. Consider a model M with parameter vector θ. The model

likelihood with data x can be found by integrating out the parameter θ

π(x|M) =

∫
π(x|θ,M)π(θ|M)dθ, (37)

where π(θ|M) is the prior density of θ in M . Given a set of K competing models

(M1, . . . ,MK) with parameters θ[1], . . . ,θ[K] respectively, the Bayesian alterna-

tive to traditional hypothesis testing is to evaluate and compare the posterior

probability ratio between the models. Assuming we have some prior knowledge

about the model probability π(Mi) (if no knowledge is available one can assign

equal probabilities to the models), we can compute the posterior probabilities for

all models using the model likelihoods

π(Mi|x) =
π(x|Mi) π(Mi)∑K

k=1 π(x|Mk) π(Mk)
. (38)

Consider two competing models M1 and M2, parameterised by θ[1] and θ[2] re-

spectively. The choice between the two models can be based on the posterior

model probability ratio, given by

π(M1|x)
π(M2|x)

=
π(x|M1) π(M1)

π(y|M2) π(M2)
=

π(M1)

π(M2)
B12, (39)

where B12 = π(x|M1)/π(x|M2) is the Bayes factor, the ratio of the posterior odds

of model M1 to that of model M2. As shown by Lavine and Scherrish (1999),

an accurate interpretation of the Bayes factor is that the ratio B12 captures the

change of the odds in favour of model M1 as we move from the prior to the poste-

rior. A Bayes factor B12 > 10 is considered strong evidence in favour of M1. Kass

and Raftery (1995) give a detailed review of the Bayes factors. Typically, the

integral (37) required by the Bayes factor is not analytically tractable, and sam-

pling based methods must be used to obtain estimates of the model likelihoods.

There are quite a few methods in the literature for direct computation of the

Bayes factor or indirect construction of the Bayesian model selection criterion,

both based on MCMC outputs. The popular methods are direct estimation of
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the model likelihood thus the Bayes factor; indirect calculation of an asymptotic

approximation as the model selection criterion; and direct computation of the

posterior model probabilities, as discussed below. Also, given MCMC samples

from the posterior distribution obtained through MCMC, there is a reciprocal

importance sampling estimator (RISE) proposed in Gelfand and Dey (1994) to

approximate the model likelihood that can be regarded as a generalization of the

harmonic mean estimator suggested by Newton and Raftery (1994).

• Direct calculation of model probabilities. Accurate estimation of the re-

quired posterior distributions usually involves development of a Reversible Jump

MCMC framework. This type of Markov chain sampler is complicated to develop

and analyse. It goes beyond the scope of this paper but interested reader can

find details in Green (1995). In the case of small number of models, Congdon

(2006) suggests to run a standard MCMC for each model separately and use

the obtained MCMC samples to estimate π(Mk|x). It was adopted in Peters,

et al (2009) for modelling claims reserving problem in the insurance. Using the

Markov chain results for each model, in the case of equiprobable nested models,

this procedure calculates the posterior model probabilities π(Mi|x) as

π(Mi|x) =
1

L

L∑
l=1

f
(
x|Mi,θ

(l)
[i]

)
∑K

j=1 f
(
x|Mj,θ

(l)
[j]

) , (40)

where θ
(l)
[i] is the MCMC posterior sample at Markov chain step l for model Mi,

f(x|Mi,θ
(l)
[i] ) is the joint density of the data x given the parameter vector θ

(l)
[i] for

model Mi, and L is the total number of MCMC steps after burn-in period.

• Deviance Information Criterion. For a dataset X = x generated by the

model with the posterior density π(θ|x), define the deviance

D(θ) = −2 ln π(x|θ) + C, (41)

where the constant C is common to all candidate models. Then the deviance

information criterion (DIC) is calculated as

DIC = 2E[D(θ)|X = x]−D(E[θ|X = x])

= E[D(θ)|X = x] + (E[D(θ)|X = x]−D(E[θ|X = x])), (42)

where E[·|X = x] is the expectation with respect to the posterior density of

θ. The expectation E[D(θ)|X = x] is a measure of how well the model fits
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the data; the smaller this is, the better the fit. The difference E[D(θ)|X =

x]−D(E[θ|X = x]) can be regarded as the effective number of parameters. The

larger this difference, the easier it is for the model to fit the data. The DIC

criterion favours the model with a better fit but at the same time penalises the

model with more parameters. Under this setting the model with the smallest

DIC value is the preferred model. DIC is a Bayesian alternative to Akaike’s

information criterion. For more details on the above-mentioned criteria, see e.g.

Robert (2001, Chapter 7).

• Model averaging. If competing models have significant probabilities, then the

modeller may choose to average the results across the models (weighted by model

probabilities) instead of selecting the best model. Here, one can use the model

probabilities implied by the above discussed AIC or Bayes factors.

3.7 Model assessment

Once the best model is selected using the above described statistical criteria, the mod-

eller should perform the assessment of the selected model. Typically it involves esti-

mating the prediction error on new data.

• Out-of-sample or cross validation. Cross-validation is a technique for as-

sessing the accuracy of the prediction of the fitted statistical model. It involves

partitioning a sample of data into complementary subsets, performing the anal-

ysis on one subset and validating the analysis on the other subset. To reduce

variability, multiple rounds of cross-validation are performed using different par-

titions, and the validation results are averaged over the rounds. Often, one step

prediction are calculated. Typically one calculates the following quantities be-

tween observations Xt and predicted values Xpred
t = E[Xt|X1, . . . , Xt−1]:

– squared correlation or pseudo R2: (Corr[Xt, X
pred
t ])2;

– mean quadratic error: E[(Xt −Xpred
t )2];

– mean absolute percentage error: E[|Xt −Xpred
t |/Xt].

Here, we assume that the model is parameterized by θ estimated using one data

subset and the above prediction errors are calculated for another data subset.

• Hedging errors. Given that risk neutral process used for the pricing of real

option is based on assumption of replication portfolio, it is worthwhile to check the

hedging errors (difference between the option/future and replicated portfolio) for

observed data realization. This is especially critical for mark-to-market models.
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• Sensitivity. The modeller should check the sensitivity of the model output (i.e.

price of real option) to the inputs. For example, it is typical to observe that for

a long investment project, short-term factor is not important and pricing can be

done using a model for a long term factor only.

4 Empirical Applications

The data we use to test the models are weekly observations of futures prices of crude

oil, contract CL traded on the New York Mercantile Exchange (NYMEX), from 23

November 1990 till 10 May 2013. For illustration example we use the first 12 contracts

available for each observation date although for most of the dates there are about 20

contracts and for some dates there are more than 70 contracts. We fit the following

two models (one-factor and two-factor models) for the log spot price of a commodity

lnSt.

• Model 1 (Two-factor model). Assume that lnSt = ξt + χt, where χt is

unobservable short-term deviation in prices and ξt is an unobservable long-term

equilibrium price level with the following real processes

dχt = −βχtdt+ σχdzχ,

dξt = (µξ − γξt)dt+ σξdzξ,

E[dWχdWξ] = ρdt.

(43)

Corresponding risk neutral processes (used to value futures and options) are

dχt = (−β̃χt − λχ)dt+ σχdz
∗
χ,

dξt = (µ̃ξ − γ̃ξt)dt+ σξdz
∗
ξ ,

E[dz∗χdz
∗
ξ ] = ρdt.

(44)

This is just a well known Schwartz and Smith (2000) two-factor model extended

to have mean reversion in a long term factor and more general (linear in state

variables) risk premia. Under this risk neutral process, the price of the future

contract at time t with maturity at time T can be easily calculated as

Ft,T = E∗[ST ] = exp(B1(T − t)ξt +B2(T − t)χt + A(T − t)); (45)

B1(τ) = exp(−γ̃τ); B2(τ) = exp(−β̃τ);

B0(τ) =
µ̃ξ

γ̃
(1− eγ̃τ )− λ̃χ

β̃
(1− e−β̃τ ) +

σ2
ξ

4γ̃
(1− e−2γ̃τ ) +

σ2
χ

4β̃
(1− e−2β̃τ )

+
σξσχρ

γ̃ + β̃
(1− e−(γ̃+β̃)τ ).
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• Model 2 (One-factor model). Here we assume that there is only one-factor,

i.e. lnSt = ξt, that follows real and risk neutral processes

dξt = (µξ − γξt)dt+ σξdzξ,

dξt = (µ̃ξ − γ̃ξt)dt+ σξdz
∗
ξ ,

(46)

correspondingly. Then, the price of the futures contract is

Ft,T = E∗[ST ] = exp(B1(T − t)ξt + A(T − t)); (47)

B1(τ) = exp(−γ̃τ); B0(τ) =
µ̃ξ

γ̃
(1− eγ̃τ ) +

σ2
ξ

4γ̃
(1− e−2γ̃τ ),

that can be obtained from (45) by setting χt = λχ = β̃ = σ2
χ = ρ = 0.

A statistically sound method to fit the above models is the Kalman filter procedure

typically used in the academic literature. In this paper, we choose more simple, fast and

easy to implement procedure suggested in Cortazar and Schwartz (2003). In the case

of crude oil futures, this procedure produces results that are not materially different

from the Kalman filter results. Of course the advantage of the Kalman procedure is

that it calculates the model likelihood which is used to get the point estimates of the

parameters, confidence intervals for the estimates and can be used to apply formal

model selection criteria such as Akaike criteria. Under the simplified procedure, we

have to resort to in-sample and out-of-sample tests. The fitting procedure estimates risk

neutral mean reversion parameters (γ̃, β̃), volatilities (σξ, σχ) and correlation ρ using

historical covariances between futures contracts via nonlinear least square method.

Then, risk neutral drift parameters (λχ, µ̃ξ) are estimated by nonlinear least square

method minimizing ∑
i

∑
j

[lnF (ti, Tj)− lnFobs(ti, Tj)]
2

where unobservable factors ξti and χti for each trading date ti are calculated in closed

form by least square method minimizing,∑
j

[lnF (ti, Tj)− lnFobs(ti, Tj)]
2.

Finally, obtained time series for ξt and χt are used to estimate real process parameters

(µξ, γ, β, σξ, σχ, ρ) by maximum likelihood method for mean reversion process; see Ex-

ample 3.2. The calibration for the one-factor model (Model 2) is easily obtained from

this procedure by setting χt = λχ = β̃ = β = σ2
χ = ρ = 0. Calibration results are

summarized in Table 1 and Table 2. The percentage root mean square error (RMSE)

between model and market log prices (across different contracts and total across all
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contracts and trading dates) is significantly smaller for Model 1 indicating that two-

factor model is much superior than one-factor model. Other model selection statistics

(R2 and AIC) are also in favour of Model 1; see Table 1. Figure 1 shows prediction

error for some contracts, estimated long and short factors, and predicted value for the

12th contract (F12) versus time.

Model 1 (Two-Factor Model)

β = 6.06, µ = 7.62, γ = 1.69, σξ = 0.31, σχ = 0.20, ρ = −0.26, µ̃ = 1.04, β̃ = 6.73, γ̃ = 0.23

RMSE=0.45%, R2=0.999, AIC=-25175

Model 2 (One-Factor Model)

µ = 7.27, γ = 1.62, σξ = 0.29, µ̃ = 0.69, γ̃ = 0.15

RMSE=1.65%, R2=0.99, AIC=-18509

Table 1: Parameter estimates for two-factor model (Model 1) and one-factor model (Model

2). RMSE is the percentage root mean square error between model and market log prices

across all contracts and all trading dates in the dataset.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Model 1 0.6% 0.7% 0.5% 0.4% 0.4% 0.3% 0.2% 0.2% 0.2% 0.3% 0.5% 0.6%

Model 2 4.2% 1.8% 0.8% 0.6% 0.7% 0.8% 0.8% 0.9% 1.0% 1.2% 1.4% 1.7%

Table 2: The percentage root mean square error (RMSE) between model and market log

prices across different contracts. F1 corresponds to the 1st available contract, F2 to the 2nd

available contract, etc.

5 Conclusions

We considered the use of multiple factor models for valuation of real options. The

choice of underlying stochastic model is certainly important for valuation of real options

especially for projects with long lifetime. There are many statistical tools that can

help to resolve this issue. In this paper, we reviewed and discussed methods of model

selection, model assessment and model diagnostics.
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Figure 1: Fitting results for two-factor model (Model 1).
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