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Abstract
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payoff all increase with the project’s transient risk but decrease with its intrinsic risk.
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1 Introduction

A growing literature in behavioral economics argues that individual behavior often departs from

the neoclassical paradigm of complete rationality. A number of studies demonstrate that agents’

decisions are significantly influenced by dispositional characteristics such as optimism (see Baker

et al, 2005). In this study, we develop a dynamic, structural model of venture capital investment

to derive quantitative assessments of the impact of entrepreneurial optimism on the characteris-

tics of venture capital relationships—the economic value they generate, the structures of dynamic

contracts between venture capitalists (VCs) and entrepreneurs (ENs), the durations of VC rela-

tionships, the manner in which VC investment is staged over time, and the extent to which EN

optimism could mitigate agency costs of risk-sharing between VCs and ENs.

Although the model we develop is potentially applicable in other economic settings, we focus on

VC-EN relationships for two principal reasons. First, venture capital is one of the most important

mediums through which technological innovation, a key driver of economic growth, is financed.

Second, because innovation is often characterized by high levels of uncertainty and differing beliefs

about project quality, it is anecdotally suggested that optimism significantly affects VC-EN rela-

tionships. If optimism, indeed, influences VC relationships and thus the financing of innovation, it

clearly has important aggregate welfare consequences.

In our dynamic principal-agent model, VCs and ENs could have asymmetric beliefs about the

intrinsic quality of projects in addition to having asymmetric attitudes towards their risk. We

estimate the model parameters by matching a large set of disparate statistics on the distributions

of investments, payoffs, risks and returns of VC projects predicted by the model to their observed

values in the data. In particular, we estimate the degree of EN optimism or the optimism premium

to be 24.6%, which illustrates that the data are consistent with a significant level of EN optimism.

The estimated optimism premium also explains the discrepancy between the discount rates used

by VCs to value projects (∼ 40%), which adjust for optimistic payoff projections by ENs, and the

average expected return of VC projects (∼ 15%). EN optimism mitigates the agency costs of risk-

sharing between VCs and EN’s by over 20%, is a key determinant of the durations and economic

values of VC relationships, and could explain features of the dynamic contracts between VCs and

ENs observed in reality. We derive new, empirically testable implications for the effects of projects’

risks, the degrees of uncertainty about their quality, their physical and human capital intensities

on the returns, durations, and levels of investment of VC projects as well as the characteristics of

contracts between VCs and ENs. The tractability of the model and its ability to match disparate

statistics associated with VC projects suggest that it could be a useful tool to value risky ventures.
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In our continuous-time framework a cash-constrained, risk-averse EN with a project approaches

a risk-neutral VC for financing. The VC is the manager of a diversified venture capital fund whose

capital is competitively supplied by outside investors who care about the fund’s expected return on

assets in excess of a benchmark in each period. The VC or the EN could terminate the relationship

at any date. All payoffs occur upon termination of the project.1 The model’s state variable is the

project’s termination payoff at each date. It represents the total payoff if the project is terminated

at that date and is contractible. Both the VC and the EN possess project-specific skills and neither

can commit to supplying them to a third party.2

The termination payoff evolves as a log-normal process. The expected growth rate of the

termination payoff process has two components: a fixed component that represents the project’s

intrinsic quality and a discretionary component that is determined by the VC’s investments and the

EN’s efforts over time. The VC and EN have imperfect information about the project’s intrinsic

quality. The degree of EN optimism is the difference between the EN’s and VC’s mean assessments

of project quality. The VC’s prior on the project’s quality coincides with the actual distribution

of project qualities. The EN is, however, optimistic in that his mean assessment of the project’s

quality exceeds the actual mean. The VC’s and EN’s beliefs are common knowledge; that is, the

VC and EN “agree to disagree”.

The volatility of the termination payoff process is the project’s intrinsic risk, which remains

invariant through time. Intermediate observations of the project’s termination payoff serve as noisy

signals of the project’s quality, which enable the VC and the EN to update their assessments in a

Bayesian manner. The common variance of their mean assessments is the project’s transient risk,

which is resolved over time.

The EN is provided with inter-temporal incentives to exert effort through a contract that

specifies his share of the termination payoff of the project. Assuming the VC has the bargaining

power, we derive the equilibrium dynamic contract between the VC and the EN. The contract

describes the VC’s investments over time, the EN’s path-dependent payoff upon termination, and

the inter-temporal performance targets that must be met for the relationship to continue.

Under the equilibrium contract, the change in the EN’s promised payoff over any period is an

affine function of the change in the termination payoff or “performance” over the period. Condi-

tional on continuation, the VC’s proportional investment rate, the sensitivities of the EN’s com-
1Our analysis could be generalized to incorporate intermediate cash flows that are proportional to the termination

payoffs without altering our main results.
2As in studies such as Kiyotaki and Moore (1997) and Neher (1999), the project’s termination payoff at any

date is, therefore, less than or equal to its value under hypothetical full commitment that rationally incorporates
future physical and human capital investments of the VC and EN—the two values only coincide at the equilibrium
termination time of the project.
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pensation to performance over each period (the pay-performance sensitivities), and the EN’s effort

in each period are all deterministic functions of time. The component of the change in the EN’s

promised payoff that does not depend on performance over the period is, however, stochastic and

depends on the VC’s and EN’s current mean assessments of project quality. The optimal contract

between the VC and EN predicted by the model shares many features with observed contractual

structures: the VC’s payoff structure has “debt” and “equity” components, the EN’s stake in the

project vests over time, and the VC’s claim on the project’s payoffs allows her to recover her

cumulative investments with high probability (Sahlman, 1990, Kaplan and Stromberg, 2003).

We analytically derive properties of the equilibrium contract. The contract balances the costs of

risk-sharing between the VC and the EN with the positive rents that the VC is able to extract due to

the EN’s optimism. Because the degree of EN optimism declines over time as the VC and EN learn

about the project’s intrinsic quality, the rents from the EN’s optimism decrease relative to the costs

of risk-sharing. The VC’s proportional investment rates, the EN’s pay-performance sensitivities,

and the EN’s effort, therefore, decrease monotonically over time. In the benchmark scenario in

which the VC and EN have symmetric beliefs, however, the EN’s pay-performance sensitivity and

the VC’s proportional investment rate are constant over time. Hence, the presence of EN optimism

is a key determinant of the inter-temporal variations in the EN’s pay-performance sensitivity and

the VC’s investment rate. The paths of the VC’s proportional investment rate, the EN’s pay-

performance sensitivity, and the EN’s effort (conditional on continuation of the relationship) all

decline with the project’s intrinsic and transient risk and increase with the degree of EN optimism.

The duration of the relationship increases with the degree of EN optimism and decreases with the

EN’s risk aversion. These results illustrate the negative effects of risk and the positive effects of EN

optimism on risk sharing between the VC and EN and, therefore, the power of incentives for the

EN. The negative relation between duration and the degree of EN optimism is consistent with the

evidence in Kaplan and Stromberg (2003) that experienced entrepreneurs, who are likely to have

more realistic beliefs, receive fewer rounds of financing.

Using the simulated method of moments, we estimate the baseline values of the key structural

parameters of the model, which include the average intrinsic quality of VC projects, the degree of

EN optimism, the EN’s cost of bearing risk and his disutility of effort. We estimate these parameters

by matching the predicted values of a disparate set of statistics pertaining to the distributions of

total investments, payoffs, risks and returns of VC projects to their observed values reported in

Sahlman (1990) and Cochrane (2005). With significantly fewer parameters, the model is able to

closely match these observed statistics. Further, the parameter confidence intervals obtained using

bootstrapping reveal that the structural parameters of the model are estimated quite accurately.

3



Our indirect inference approach shows that the average initial degree of EN optimism implied by

the data is 24.6%, which is almost four times the average intrinsic quality, 6.6%, of all projects. We

obtain quantitative guidance on the relative impact of EN optimism by also numerically analyzing

the “no agency” benchmark scenario in which there are no conflicts of interest between the VC

and EN as well as the “symmetric beliefs” benchmark scenario in which the VC and EN have

asymmetric attitudes towards risk, but have symmetric beliefs about project quality. We find that,

on average, EN optimism mitigates the agency costs of risk sharing by over 20%. Due to the

substantial rents the VC extracts by “feeding” EN optimism, we also find that the benefits of EN

optimism more than completely offset the loss in the value of the VC fund’s stake in the project

due to the agency costs of risk-sharing. The positive effects of EN optimism on project value are

consistent with the empirical evidence reported in Gelderen et al (2005).

We numerically establish testable implications of the model by examining how changes to the

degree of EN optimism, the project’s human capital intensity, and the project’s intrinsic and tran-

sient risks affect three fundamental characteristics of VC-EN relationships: expected duration, firm

value, and net present value of the payoffs to the VC fund or the VC fund stake. Consistent with

our earlier analytical results, EN optimism significantly increases these characteristics. Because the

EN’s effort is a key driver of the economic value generated by the VC-EN relationship, each of these

characteristics also increases with the project’s human capital intensity. The project’s intrinsic and

transient risks have opposing effects on the “speed of learning” about project quality and, therefore,

the rate at which the degree of EN optimism declines over time. As a result, they have dramatically

opposite effects: each of the three characteristics increases with the project’s initial transient risk,

but decreases with its intrinsic risk. Hence, firm value and the VC fund’s stake are enhanced when

there is greater uncertainty about project quality. Consistent with empirical evidence, therefore,

VCs have significant incentives to finance innovative projects compared with mature or “imitating”

projects because there is greater uncertainty about the quality of innovative projects (Hellman and

Puri, 2000). We also find that firm value is positively related to the duration of the relationship,

which is consistent with the evidence in Gompers (1995).

It is well-documented in the empirical and anecdotal literature that VCs use discount rates

around 40% to value projects. It has been suggested that higher discount rates could be a mech-

anism that VCs use to adjust optimistic projections by ENs. Previous research, however, has not

ascertained whether EN optimism is, in fact, significant enough to generate such a large discrepancy

between the discount rates used by VCs and the average expected return of VC projects, which is

approximately 15% (Cochrane, 2005). We use our structural model to address this issue. We define

the implied discount rate as the rate at which the EN’s projections of the project’s payoffs would
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have to be discounted so that the resulting project value equals the project value under the VC’s

projections of the project’s payoffs. Consistent with the average expected return of VC projects, we

assume a discount rate of 15% to obtain the project value under the VC’s projections. The implied

discount rates for a wide range of parameter values predicted by the model lie between 40% and

50%, which is consistent with the range of VC discount rates reported in prior empirical research

(for example, Sahlman, 1990). Our study, therefore, confirms that entrepreneurial “optimism pre-

mia” are high enough to justify the discount rates used by VCs in reality. The internal rates of

return of VC projects (∼ 60%) as well as the ratio of project values under EN beliefs to those

under VC beliefs (∼ 2) predicted by the model also match their corresponding values reported in

anecdotal literature (Gladstone and Gladstone, 2002, p. 168).

While the effects of agency conflicts and imperfect information are studied in several contexts

by previous studies, theoretical literature that incorporates asymmetric beliefs in the context of the

financing of innovation is relatively nascent. Landier and Thesmar (2005) develop a two-period VC

model with asymmetric beliefs and show that optimistic entrepreneurs tend to rely on short-term

debt rather than long-term debt. Our framework differs significantly from theirs in that investment

could be staged over time and the dynamic contract between the VC and the EN has both “equity”

and “debt” components. In another contemporaneous working paper, Cuny and Talmor (2005)

analyze a two-period VC finance model and show that round financing is preferred to milestone

staging when the EN is more optimistic than the VC. We contribute to this stream of the literature

by adopting a structural approach to examine how the interplay between asymmetric beliefs and

agency conflicts affect the manner in which VC investment is staged over time, the dynamic contract

between the VC and the EN, and the duration and economic value of VC relationships.

A second stream of the literature investigates the importance of staging in the mitigation of

VC-EN agency conflicts. In a deterministic model, Neher (1999) shows that staging is essential to

overcome the hold-up problem. As in Neher (1999), the manner in which VC investment is staged

over time as well as the number of stages are determined endogenously in our framework. As Neher’s

(1999) model is fully deterministic, however, his framework cannot be used to study the effects of

risk, imperfect information, and asymmetric beliefs on the characteristics of VC relationships.3

A third strand of the literature analyzes the features of the optimal contracts that emerge in

“double-sided” two-period moral hazard models in which the VC and EN exert effort (Casamatta,

2003, Cornelli and Yosha, 2003, Schmidt, 2003, Repullo and Suarez, 2004, Inderst and Muller,

2004). We too develop a model in which the VC and EN take value-enhancing actions. Similar to
3Kockesen and Ozerturk (2004) argue that some sort of EN “lock-in” is essential for staged financing to occur.

Egli et al (2006) argue that staging can be used to build an EN’s credit rating. Berk et al (2004) develop an R&D
model with a single, monolithic agent in which staging is exogenous.
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these studies, the optimal contracts predicted by our analysis have “debt” and “equity” features

consistent with observed contractual structures. In contrast, however, our analysis focuses on the

effects of asymmetric beliefs on the characteristics of VC-EN relationships. Moreover, our dynamic,

structural model can be calibrated to data to obtain quantitative assessments of the degree and

effects of entrepreneurial optimism.

Our framework shares features of dynamic principal-agent models with Bayesian learning (for

example, Gibbons and Murphy, 1992, Bergemann and Hege, 1998, Holmstrom, 1999). We con-

tribute to this literature by developing a framework where the principal and the agent make in-

vestments (physical and human capital) over time, have asymmetric beliefs about project quality,

and the relationship is terminated endogenously. The distinction between projects’ intrinsic and

transient risks that we emphasize in our analysis leads to novel implications for the effects of these

two components of risk on VC relationships.

Cochrane (2005) uses an empirical model to estimate the risks and returns of VC projects

accounting for the selection bias inherent in the measurement of returns. We complement his study

by developing a theoretical structural model in which the underlying economic forces that drive

VC projects’ investments and payoffs are explicitly incorporated, thereby illuminating the sources

as well as the effects of VC projects’ risks and returns.

In summary, this study’s primary contribution to the literature is the development and analysis

of a dynamic structural model of venture capital investment. The model is parsimonious, yet

realistic enough to be taken to the data to yield quantitative assessments of the effects of the

salient aspects of VC projects, namely, risky payoffs, agency conflicts, uncertainty about project

quality and asymmetric beliefs. The predictions of our study are broadly consistent with extant

empirical evidence on the characteristics of VC-EN relationships and also suggest additional testable

implications that could provide guidance for future empirical research. Our study shows that

entrepreneurial optimism is an essential determinant of the characteristics of VC relationships.

The tractability of our structural model, coupled with the fact that it is able to match disparate

empirical data on the distributions of investments, payoffs, risks and returns of projects as well

as the discount rates used to value them, suggests that it could be useful as a tool to value risky

ventures whose cash flows are affected by asymmetric beliefs and agency conflicts.
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2 The Model

We consider a continuous-time framework with time horizon [0, T ]. Apart from its analytical

tractability, a continuous-time formulation ensures the existence of equilibrium in the model.4

At date 0, a cash-constrained entrepreneur (EN) with a project approaches a venture capitalist

(VC) for financing. The VC is the manager of a diversified venture capital fund whose capital

is competitively provided by outside investors. We focus on a representative project in the VC

fund’s portfolio. The project can generate value through physical capital investments by the VC

and human capital (effort) investments by the EN. The VC and the EN have imperfect information

about the project and differ in their initial assessments of the project’s quality.

If the VC agrees to invest in the project, she invests an initial amount of seed capital V0. She

offers the EN a long-term contract that describes her subsequent investments in the project over

time and the EN’s compensation. The VC’s investments are made continuously over time. The

long-term contract between the VC and EN is characterized by “one-sided commitment” in that

the VC is committed to the contract, but the EN could renege on the contract at any date.

The key state variable in the model is the project’s termination payoff Vt, which is the total

payoff if the VC-EN relationship is terminated at date t. The termination payoff is the value of the

project “outside the VC-EN relationship”. Similar to Neher (1999), the VC and the EN possess

project-specific skills that are not transferrable. Thus, the termination payoff (the “outside” value)

of the project is, in general, less than its “inside” value (see also Kiyotaki and Moore, 1997). The

termination payoff is the only economic variable that is contractible.5 For simplicity, we assume

the project does not generate any intermediate cash flows. All our results hold in an extension

of the model in which the project generates intermediate cash flows that are proportional to the

termination payoff process.

2.1 The Termination Payoff Process

The initial termination payoff of the project equals the initial seed capital investment V0 of the

VC. The incremental termination payoff, that is, the change in termination payoff over any period

[t, t + dt], dVt, depends on the physical capital investment of the VC, the human capital (effort)

investment of the EN, the intrinsic quality of the project, and its risk and is given by

dVt =

discretionary output︷ ︸︸ ︷
Φ(ct, ηt)Vtdt −

operating costs︷ ︸︸ ︷
ltVtdt +

intrinsic output︷ ︸︸ ︷
ΘVtdt +

intrinsic risk︷ ︸︸ ︷
sVtdBt . (1)

4As discussed by Holmstrom and Milgrom (1987), optimal contracts need not exist in discrete-time frameworks
in which payoffs are drawn from distributions with unbounded support.

5An important stream of the literature examines the effect of “incomplete contracting” on VC relationships
(Kirilenko, 2001, Dessein, 2005).
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In (1), B is a standard Brownian motion, and ctVtdt and ηtVtdt represent, respectively, the capital

invested by the VC and the EN’s effort exerted in period [t, t+dt]. Since ct and ηt are the investment

and effort rates as proportions of the state variable Vt, we shall hereafter refer to ct and ηt as simply

the investment rate and effort, respectively, to simplify the exposition. If either the EN’s effort or

the VC’s investment is zero, then the change in termination payoff is given by dVt = −ltVtdt. It

is not difficult to show that, in equilibrium, effort and investment are both positive if the project

continues. To simplify the notation, we henceforth assume the termination payoff evolves as in (1).

The modeling of the termination payoff as a log-normal (rather than normal) process is mo-

tivated by the observations in Cochrane (2005) that venture capital payoffs are highly skewed so

that modeling them as normal processes would be inappropriate. We now discuss the four sources

of the change in the termination payoff in each period.

Discretionary output : Discretionary output in period [t, t + dt] is a direct result of the VC’s invest-

ment rate ct and the EN’s effort ηt, and is determined by the production function Φ(ct, ηt) = Acα
t ηβ

t .

The VC closely monitors the EN so that the EN’s effort is observable to the VC.6 However, it is

non-verifiable by a third party and, therefore, not directly contractible. Hence, the EN must be

provided with appropriate incentives to exert effort through her explicit contract with the VC.

Operating costs: The term ltVtdt represents operating costs, which could include depreciation

expenses, decline in revenues due to increased competition, fixed costs arising from increases in

the scale of the project, etcetera. The operating costs parameter lt is deterministic, increasing and

convex over time, which ensures that termination occurs in finite time almost surely.

Intrinsic risk : The term sVtdBt, where s > 0 is constant, represents the “intrinsic” component of

the project’s risk in period [t, t+dt]. The intrinsic risk s is the component of the project’s risk that

remains invariant over time.

Intrinsic output : The parameter Θ represents the growth rate of the project’s termination payoff

arising from the project’s intrinsic quality. The VC and the EN have imperfect information about

Θ and could also differ in their beliefs about its value. As in a large number of studies that

incorporate heterogeneous beliefs (for example, Allen and Gale, 1999), their respective beliefs are

common knowledge; that is, they “agree to disagree”. The uncertainty in the value of Θ may

be viewed as the project’s transient risk. The transient risk is resolved over time as the VC

and the EN update their priors on Θ in a Bayesian manner based on observations of the project’s
6Sahlman (1990) reports that venture capitalists closely monitor the firms they invest in. He mentions that lead

venture investors visit each company in their portfolio 19 times every year and spend 100 hours in direct contact.
Hellman and Puri (2000, 2002) emphasize the importance of monitoring and oversight in their empirical analyses of
venture capital financing.
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performance. The VC’s and EN’s initial priors on Θ are normally distributed with Θ ∼ N(µV C
0 , σ2

0)

and Θ ∼ N(µEN
0 , σ2

0), respectively. The VC’s beliefs are correct so that Θ is actually drawn from

the distribution N(µV C
0 , σ2

0). Define

ξtdt := d lnVt − (Φ(ct, ηt)− 0.5s2 − lt)dt = Θdt + sdBt. (2)

Since the VC’s investment rate ct and the EN’s effort ηt are observable, it follows from well-known

formulae (Oksendal 2003) that the posterior distribution on Θ for each date t ≥ 0 is N(µ`
t, σ

2
t ),

` = V C, EN , where

σ2
t =

s2σ2
0

s2 + tσ2
0

, (3)

µ`
t =

s2µ`
0 + σ2

0

∫ t
u=0 ξudu

s2 + tσ2
0

, ` = V C, EN. (4)

From Oksendal (2003), we can show that the evolution of the mean posterior assessment of project

quality, µ`
t, is described by the following stochastic differential equation

dµ`
t =

σ2
0

s2 + tσ2
0

[d lnVt − (Φ(ct, ηt)− 0.5s2 − lt)dt− µ`
tdt] , ` = V C,EN. (5)

From (1) and (5), the standard deviation σµ
t of the evolution of the mean assessment of project

quality is

σµ
t =

sσ2
0

s2 + tσ2
0

. (6)

Note that the standard deviations of the evolutions of the VC’s and EN’s mean assessments of

project quality are equal and decrease with time. Let

∆t := µEN
t − µV C

t =
s2∆0

s2 + tσ2
0

=
σ2

t

σ2
0

∆0 (7)

denote the degree of asymmetry in beliefs at date t. It follows from (7) that the degree of asymmetry

in beliefs is resolved deterministically over time, and there is a linear relationship between the

resolution of the asymmetry of beliefs and the resolution of the transient risk. Consistent with

the evidence reported by Landier and Thesmar (2005) and Sahlman (1990), the EN is initially

optimistic so that ∆0 ≥ 0. Thus, ∆t decreases with time since the variance σ2
t decreases with time.

2.2 Contracting between the VC and EN

We denote the information contained in the history of termination payoffs {Vt, t ≥ 0} by {Ft}.
Since the project does not generate intermediate cash flows, the contract between the VC and the

EN describes the VC’s incremental capital investments over time and the payoffs to be received by

both parties upon termination. Further, since the EN could choose to terminate the relationship

9



at any date, the contract specifies the payoffs to be received by both parties if the project were

terminated at any date t ≥ 0. More precisely, a feasible contract is described by the triplet (P, c, τ),

where P and c are {Ft}-adapted stochastic processes and τ is an {Ft}-stopping time. Pt is the EN’s

payoff and Vt − Pt is the VC fund’s payoff if the relationship is terminated at date t ≥ 0, ct is the

VC’s investment rate at date t, and τ is the termination time. The termination time is stochastic

and Vτ − Pτ is the payoff to the VC fund upon termination, and not the VC’s compensation.

The VC possesses the bargaining power with the EN at date zero and offers the EN a long-term

contract, which specifies her dynamic capital investments in the projects, the termination time, and

the EN’s payoff upon termination. The EN, in turn, dynamically chooses his effort to maximize her

total expected utility including her disutility from effort.7 The fact that the EN could repudiate the

contract at any date allows him to extract a portion of the surplus generated by the relationship

over time. The equilibrium contract is self-enforcing on the EN, that is, the EN has no incentive

to renege prior to the termination time specified in the contract.

2.3 The VC’s Compensation Structure and Objective

The VC is the manager of a venture capital fund with capital supplied by outside investors.8 The

VC could set up and manage multiple diversified funds over time. Outside investors (existing and

potential) in the market evaluate the VC and provide capital to her on the basis of the expected

return she earns on assets in excess of a benchmark return, that is, her risk-adjusted return on

assets. As we focus on a representative project in the VC’s portfolio, we define the VC’s relative

performance in terms of the performance of the representative project.

As discussed earlier, the project’s outside value or asset value is Vt at any date t. The value of

the fund’s holdings in the project at date t is the termination payoff less the promised payoff to

the EN, i.e., Vt − Pt. After subtracting the capital investment ctVtdt specified by the contract, the

change in the value of the fund’s holdings over the period [t, t + dt] (if the project is continued) is

Change in Value of Holdings = [Vt+dt − Vt]− [Pt+dt − Pt]− ctVtdt. (8)

Suppose, instead, that the project’s assets were (hypothetically) invested in the benchmark. The

change in the value of the fund’s holdings would be given by

Change in Value of Holdings under Benchmark = [Vt(1 + Rbdt)− Vt]− [Pt(1 + rdt)− Pt]. (9)
7As is common in the contract theory literature, we could alter the notation to allow for the EN’s dynamic effort

choices to also be specified by the contract, which satisfies incentive constraints for the EN.
8We could view the VC as the representative “general partner” of the fund and the outside investors as the “limited

partners”. Gompers and Lerner (1996) document that, starting from the early 1980s, a majority of VC organizations
were formed as limited partnerships so that, by the year 1992, funds formed 80% of the total VC pool.
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The term Vt(1 + Rbdt) is the end-of-period value of the project’s assets if they are invested in

the benchmark. The term Pt(1 + rdt) is the end-of-period promised payoff to the EN, which is his

beginning-of-period promised payoff Pt carried forward at the risk-free rate r, an assumed constant.

The change in value of the fund’s holdings in excess of the benchmark over the period is the

difference between the right-hand sides of (8) and (9), respectively. The Excess Return On Assets

(ExROA) of the fund over the period is the ratio of the change in value of the fund’s holdings in

excess of the benchmark to the asset value Vt, and is given by

ExROAt+dt :=
dVt − dPt − ctVtdt− rPtdt

Vt
−Rbdt. (10)

Note that this excess return on assets is gross of the fund’s operating costs and the VC’s com-

pensation over the period. The VC’s payoff in each period is an increasing affine function of the

expected excess return on assets, and is given by

VC’s Payofft+dt := A + BEV C
t (ExROAt+dt), B > 0. (11)

Outside investors have the same beliefs as the VC so that the expectation is under the VC’s beliefs.9

In Appendix A, we present an extension of the model in which the dynamic relationship between

outside investors and the VC is incorporated. Outside investors competitively supply capital to

the VC and the VC faces decreasing returns to scale in managing her investments. In equilibrium,

the expected excess return on assets net of operating costs and the VC’s compensation is zero,

that is, outside investors earn competitive or zero risk-adjusted excess returns on their investments.

We show that the (endogenously derived) capital the VC is able to raise at date t is an increasing

function of the expected excess return on assets. Effectively, the expected excess returns on assets

generated by the VC over time serve as signals of her investment ability for which she is dynamically

compensated by outside investors through the capital they provide.

For concreteness and simplicity, and to facilitate the structural estimation of the model in

Section 7, we assume the VC’s operating costs are quadratic in the total capital she manages and

that she receives a constant proportion of the capital she manages as compensation in each period.

It then follows that the VC’s compensation has the affine form (11) (see Appendix A).10 Since the

fixed portion of the VC’s compensation neither influences nor is affected by her actions, we hereafter
9The VC is allowed to have unlimited liability. Evidence reported by Sahlman (1990) shows that, unlike the

limited partners, general partners of VC funds have unlimited liability.
10Our analytical results hold more generally if the VC’s compensation is any increasing, deterministic function of

the assets under management. In reality, VCs receive a proportion of the fund’s committed capital and a percentage
of the fund’s profits over its lifetime (Sahlman, 1990) so that the VC’s compensation increases with measures of
the fund’s performance. Because our focus in this paper is on the VC-EN relationship, we simplify the analysis by
assuming a simple “constant proportion of assets” payoff structure as in the case of mutual fund managers. The VC’s
compensation, therefore, increases with her performance as represented by the capital she manages.
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set A = 0 to simplify the notation. Further, because B is merely a constant of proportionality, we

henceforth set it equal to one.

The VC is risk-neutral with respect to her payoffs that are proportional to the expected excess

returns on assets. Hence, her discounted expected utility from the project until termination is

VC’s Expected Utility = EV C
0

[ ∫ τ

0
e−rtEV C

t (ExROAt+dt)
]

= EV C
0

[ ∫ τ

0
e−rtExROAt+dt

]

= EV C
0

[ ∫ τ

0
e−rt

(dVt − dPt − ctVtdt− rPtdt

Vt
−Rbdt

)]
, (12)

where the expectation is under the VC’s beliefs about the project’s intrinsic quality. The second

equality above follows from the law of iterated expectations and the third follows from (10).

As will become clear shortly, the forms of the VC’s objective function described by (12), as well

as the EN’s objective described in the next subsection, contribute significantly to the tractability of

the model. In particular, the fact that the VC maximizes a discounted stream of payoffs that depend

on the expected excess return on assets eliminates complex path-dependencies in the equilibrium

arising from the fact that the termination payoff process is log-normal and, therefore, persistent. In

addition to the fact that it corresponds with real-life venture capital partnerships, the modeling of

the VC as the manager of a venture capital fund with capital supplied by outside investors provides

an internally consistent theoretical foundation for the VC’s objective function (12).

2.4 The EN’s Objective

As in several studies in the principal-agent literature, the EN has linear inter-temporal preferences

with a subjective discount rate (for example, DeMarzo and Fishman, 2004). In contrast with these

studies, however, the EN’s subjective discount rate is stochastic, which directly reflects his costs of

bearing risk (see Alvarez and Jermann, 2000). The EN incurs an additive monetary disutility of

effort. More precisely, if the EN’s termination payoff is Pτ and his effort is described by the process

{ηt}, his subjective valuation of his future payoffs (including his disutility of effort) at date zero is

U0 = EEN
0

[
e−rτ− 1

2
λ2τ−λBτ Pτ −

∫ τ

0
e−rt− 1

2
λ2t−λBtkηγ

t Vtdt
]
. (13)

In (13), e−rt− 1
2
λ2t−λBt is the stochastic discount factor by which the EN discounts a payoff at

date t, where λ > 0 measures his cost of bearing risk. A nonzero cost of risk λ in the EN’s subjective

valuation (13) of his future payoffs (or his stake in the firm) reflects his imperfect access to outside

credit markets.11 In Section 6, we estimate λ by matching the model’s predictions to data. The
11In analogy with fundamental results in asset pricing theory (Duffie, 2001), we directly model the EN’s subjective
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expectation in (13) is with respect to the EN’s beliefs about the project’s intrinsic quality. The

term kηγ
t Vtdt; k > 0 represents the EN’s disutility of effort in period [t, t+dt]. The EN’s disutility of

effort increases with the scale of the project represented by its termination payoff. This is consistent

with the fact that the expected change in termination payoff in (1) due to investment and effort is

also proportional to the termination payoff. As in the case of the termination payoff, the EN values

his cost of effort in any period by its expectation weighted by the stochastic discount factor. In

Appendix A, we show that the EN’s preferences as described by (13) actually belong to the general

class of recursive or “stochastic differential” preferences (Duffie and Epstein, 1992).

In our analysis, we find it useful to express the EN’s valuation (13) of his future payoffs in

an alternate form. The process exp(−1
2λ2t − λBt) is a square-integrable martingale, and is the

Radon-Nikodym derivative process of a new probability measure equivalent to the original one (see

Chapter 6 of Duffie, 2001). The EN’s valuation (13) is then expressed as

U0 = E
EN
0

[
e−rτPτ −

∫ τ

0
e−rtkηγ

t Vtdt
]
, (14)

where the expectation above is under the new probability measure. From (14), we can express

the EN’s objective by assuming that he is risk-neutral under a risk-adjusted probability—the EN’s

valuation probability and not the actual probability—that reflects his costs of bearing risk.

For future reference we note that by Girsanov’s theorem (see Chapter 6 of Duffie, 2001), the

termination payoff process evolves under the EN’s valuation probability as

dV EN
t = (Φ(ct, ηt)− lt − λs)Vtdt + ΘVtdt + sVtdBEN

t , (15)

where

BEN
t = Bt + λt (16)

is a Brownian motion under the EN’s valuation probability. The superscripts on this process and

the termination payoff process indicate that the evolution (15) is in the EN’s valuation probability.

2.5 The VC-EN Interaction

At each date t, the EN could terminate the relationship with the VC and receive his promised payoff

Pt. The EN chooses to continue the relationship over the next infinitesimal time period if and only

if his expected utility from continuation exceeds his utility from termination. The continuation

value of the EN at date t, CUt, is

CUt := E
EN
t

[
e−r(τ−t)Pτ − Pt −

∫ τ

t
e−r(u−t)kηγ

uVudu

]
, (17)

valuation of his stake in the firm as the expectation of his future total payoffs weighted by a subjective stochastic
discount factor or “valuation kernel”.
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where E
EN
t denotes the EN’s expectation under his valuation probability conditioned on the infor-

mation available at date t.

From (12), the risk-neutral VC’s continuation value CVt at date t is given by

CVt := EV C
t

[ ∫ τ

t
e−r(u−t)

(dVu − dPu − cuVudu− rPudu

Vu
−Rbdu

)]
, (18)

where EV C
t denotes the expectation under the VC’s beliefs conditioned on the information available

at date t. The equilibrium termination (stopping) time is the first time at which her continuation

value hits zero.

3 Equilibrium

We assume the following conditions on the parameters:

Assumption 1 (1− α)γ/β > 2.

Assumption 2 ∆0 < λs.

These conditions, which are easily met in the calibrated model, ensure that an equilibrium contract

between the VC and the EN exists. Assumption 1 ensures that the curvature of the EN’s disutility

of effort is above a threshold relative to the sensitivity of output to his effort. Assumption 2 ensures

that EN optimism is not high enough to outweigh the costs of risk-sharing.

3.1 Existence and Characterization of Equilibrium

In Appendix B (see Lemma 1), we show that the optimal contract has the following affine form:

dPt = atVtdt + btdVt. (19)

In (19), the contractual parameters at, bt > 0 are {Ft}-measurable. It follows easily from (19) that

the EN’s contract P satisfies

Pτ = P0 +
∫ τ

0
[atVtdt + btdVt]. (20)

In Lemma 1 in Appendix B, we also show that the optimal long-term contract between the VC

and the EN can be implemented by a sequence of single-period contracts, which are negotiated

at each date t with the VC making “take it or leave it” offers to the EN (see Fudenberg et al,

1990). We can, therefore, use backward induction to characterize the equilibrium. We now provide

a heuristic derivation of the equilibrium. To simplify the exposition we deliberately sacrifice some

mathematical rigor. In Appendix B, we provide the detailed mathematical arguments underlying

the derivation of the equilibrium.
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Assume for the purpose of this heuristic discussion that the time interval dt between successive

dates is discrete rather than infinitesimal. Suppose that the project has not been terminated as of

the date T − dt. Recall that the EN and VC priors on Θ as of date T − dt are N(µ`
T−dt, σ

2
T−dt)

with µ`
T−dt and σ2

T−dt given by (4) and (3), respectively with the index t set to T − dt. Keep in

mind that the VC’s and EN’s initial beliefs and, therefore, their respective beliefs at any date are

common knowledge. For subsequent convenience in our inductive derivation of the equilibrium, it

will be convenient to use the index t to denote the date. The index t = T − dt for now, but it will

later denote an arbitrary date when we establish the inductive step in our analysis.

The EN’s Optimal Effort in Period [T − dt, T ] for a Given Contract

Suppose that in period [t, t+dt] (recall that t = T −dt), the VC’s investment rate is c and the EN’s

contractual parameters are (a, b) in (19). If the EN’s effort is η in period [t, t+dt], his continuation

value (17) is given by

CUt = E
EN
t

[
e−rdt(Pt + dPt)− Pt − kηγVtdt

]
= E

EN
t (aVtdt + bdVt − kηγVtdt− rPtdt), (21)

where the second equality follows from (19) (neglecting o(dt) terms). From (15), we have

CUt =
[(

a + b(Acαηβ−lt+µEN
t − λs)−kηγ

)
Vt − rPt

]
dt . (22)

By Assumption 1, the optimal effort level exists and is given by

η(b, c) :=
(Aβcαb

γk

) 1
γ−β

. (23)

The VC’s Choice of Contract in Period [T − dt, T ]

The VC will choose her investment rate c and the EN’s contractual parameters (a, b) that will

ensure the EN’s participation and also rationally anticipate the EN’s best effort response. Since

the VC has the bargaining power and can make a “take it or leave it” offer to the EN, it is optimal

for her to choose (a, b) so that regardless of the state at date t = T − dt

CUt ≡ 0. (24)

It follows from (22) that the relation between the parameters a, b, and c in period [t, t + dt] that

ensures (24) is given by

a(b, c) := kη(b, c)γ − b(Acαη(b, c)β − lt + µEN
t − λs) + r

Pt

Vt
. (25)

Incorporating the EN’s best effort response, the VC’s continuation value (18) at date t is

CVt = EV C
t

[(1− b)dVt − a(b, c)Vtdt− cVtdt− rPtdt

Vt
−Rbdt

]
. (26)
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Substituting the EN’s optimal effort (23) into (26),

CVt = Λt(b, c)dt, (27)

where

Λt(b, c) := ∆tb− λsb + φ(b)cα γ
γ−β − c + µV C

t − lt −Rb . (28)

In (28), ∆t is the degree of asymmetry in beliefs at date t, defined in (7), and

φ(b) := A
γ

γ−β

(1
k

) β
γ−β

((βb

γ

) β
γ−β

(
1− βb

γ

))
. (29)

The VC chooses the capital investment rate c and the EN’s pay performance sensitivity b to

maximize Λt(b, c). We first determine the VC’s optimal investment rate c(b) as a function of the

EN’s pay-performance sensitivity b. We then derive the optimal pay-performance sensitivity and

the corresponding investment rate.

The function φ(b) in (29) is nonpositive when b ≥ γ/β. Given that ∆t decreases with t, it

follows directly from Assumption 2 and (28) that the VC will never choose a pay performance

sensitivity b ≥ γ/β. For b ∈ (0, γ/β), φ(b) > 0 and Assumption 1 guarantees that Λt(b, ·) is strictly

concave in c since the exponent on c is guaranteed to be less than 1. Consequently,

c(b) = K̂φ(b)
γ−β

(1−α)γ−β (30)

Λt(b, c(b)) = ∆tb− λsb + Kc(b) + (µV C
t − lt −Rb) . (31)

The constants K̂ and K in (30) and (31) are positive and depend on α, β, γ and A. We conclude

that the VC will choose the pay performance sensitivity in period [t, t + dt] to solve

b∗t := arg max
0<b<γ/β

Λt(b, c(b)). (32)

In addition, we have the following characterization.

Proposition 1

(a) Under Assumption 1 the optimal investment function c(·) is positive, increasing and strictly

concave on (0, 1], is decreasing on [1, γ/β] and therefore achieves its maximum at b = 1.

(b) Under Assumptions 1 and 2 there is a unique solution b∗t ∈ (0, 1) to (32).

The proof of Proposition 1 and the proofs of all remaining results are in Appendix C.
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The Inductive Step

We now set t = T − 2dt, and suppose the project has not been terminated as of date (T − 2dt). If

the VC’s investment rate is c, the EN’s contractual parameters are (a, b), and he exerts effort η,

his continuation value (17) is given by

CUt = E
EN
t [(aVtdt + bdVt − kηγVtdt− rPtdt) + e−rdtCUt+dt

]

= E
EN
t [(aVtdt + bdVt − kηγVtdt− rPtdt)] . (33)

The first line above follows by the law of iterated expectations and the second line follows from

(24). Since (33) is identical to (21), our previous arguments show that the EN’s optimal effort

η(b, c) is given by (23) and the component a(b, c) of the EN’s compensation is given by (25).

It remains to determine the VC’s optimal choices for the investment rate and pay performance

sensitivity. Incorporating the EN’s best effort response, the VC’s continuation value at date t is

(see 18)

CVt = EV C
t

[
(1−b)dVt − a(b, c)Vtdt− cVtdt− rPtdt−RbVtdt

Vt
+ e−rdt max(CVt+dt, 0)

]

= Λt(b, c)dt + e−rdtEV C
t max(CVt+dt, 0), (34)

where the second line follows from (26) and (27). Since the EN’s effort is observable, the updated

assessments of project quality at date t+dt, µEN
t+dt and µV C

t+dt, do not depend on the VC’s investment

or the EN’s effort over the period t + dt. It then follows from (27) and (28) that the second term

on the right-hand side of (34) does not depend on the EN’s effort or the VC’s investment at date

t. Hence, the VC’s continuation value at date t is maximized when the optimal investment is given

by (30) and the optimal pay performance sensitivity solves (32).

We can clearly extend the above arguments by induction to any date t and thereby derive the

equilibrium, as characterized in the following theorem.

Theorem 1 (Characterization of Equilibrium)

Under Assumption 1, if the project has not been terminated as of date t ∈ [0, T ], then an equilibrium

contract offered by the VC and the EN’s effort in the period is characterized, as follows:

• The pay performance sensitivity is b∗t , the solution to (32);

• The investment rate is c∗t := c(b∗t ) where c(·) is defined in (30);

• The fixed portion of the EN’s compensation is a∗t := a(b∗t , c∗t ) defined in (25);

• The optimal effort level is η∗t := η(b∗t , c∗t ) defined in (23).
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• The VC’s maximum continuation value at date t is given by

CVt =

within-period flow︷ ︸︸ ︷
Λt(b∗t , c

∗
t )dt + e−rdt

future option value︷ ︸︸ ︷
EV C

t

[
max{CVt+dt, 0}

]
. (35)

3.2 The VC’s Periodic Flow

Since the degree of asymmetry in beliefs, ∆t, and variance, σ2
t , are deterministic functions of

time (see 7) it follows from Proposition 1 and Theorem 1 that the equilibrium values for the pay

performance sensitivity, investment and effort at each point in time (conditional upon continuation)

are positive and also deterministic. The only component of the contract that is stochastic and is

adjusted based on realizations of the termination payoff Vt of the project (the “signal” of project

quality) is the component a∗t of the EN’s compensation. Furthermore, the equilibrium described in

Theorem 1 is stable; that is, the EN’s pay performance sensitivities, effort, and the VC’s investment

rates are continuous functions of the model parameters.

As summarized in Theorem 1, the equilibrium contract at date t is determined by b∗t . Let

Ft(b) := Λt(b, c(b))− µV C
t + lt + Rb = ∆tb− pb + Kc(b) (36)

and define

F ∗
t := max

0<b<1
Ft(b). (37)

Clearly, the solution to (32) is also a solution to (37). The VC’s periodic flow function, Ft(b),

consists of three components:

Rent from the EN’s optimism. The term, ∆tb, reflects the rents that the VC extracts from the EN

by exploiting his optimism about the project’s intrinsic quality.

Cost of risk. The term, λsb, reflects the VC’s costs of risk-sharing with the risk-averse EN. We

refer to λs as the price of risk.

Return on investment. The “return on investment” term, Kc(b), reflects the VC’s expected return

as a result of her investment and the EN’s effort.

3.3 Comparisons with Observed Contractual Structures

The equilibrium contract between the VC and the EN has many of the features observed in actual

venture capital contractual structures. By (19), the change in the EN’s stake in the project over any

period [t, t + dt] has a component a∗t Vtdt, which is known at date t, and a risky component b∗t dVt,

which is a random variable whose value is realized at date t + dt. Because the termination payoff

process grows in expectation if the project is continued, and the VC has the bargaining power, the

18



parameter a∗t is generally negative. Hence, the component a∗t Vtdt is similar to a “debt” or payment

made by the EN while the component b∗t dVt is the “equity” portion of the EN’s compensation

over the period. Recall, however, that all payoffs occur upon termination so that no payments

are actually made by the EN prior to termination. The portion
∫ τ
0 a∗t Vtdt of the EN’s termination

payoff could be viewed as a cumulative debt or dividend payment from the EN to the VC fund

while the portion
∫ τ
0 b∗t dVt is the cumulative outcome of the changes in the EN’s equity stake over

each period.12

Because the VC fund’s stake in the project at any date t is Vt − Pt, the VC fund’s payoff at

termination is − ∫ τ
0 a∗t Vtdt +

∫ τ
0 (1 − b∗t )dVt. The VC fund, therefore, holds a contract that has

debt as well as equity components. These features of the optimal contract are consistent with data

on observed VC contracts reported by Sahlman (1990) and Kaplan and Stromberg (2003). They

document that the most commonly observed security held by VCs is preferred stock in which VC

investors hold a claim to a preferred dividend stream (that could be deferred) as well as an equity

claim to any residual value of the venture. The complex path-dependence of the VC fund’s and

EN’s payoffs, however, implies that the equilibrium contract between the VC and the EN can only

be implemented (or approximated) using combinations of different financial securities, which is also

consistent with the evidence in Kaplan and Stromberg (2003).

Because the VC has the bargaining power, we observe that the VC fund’s claim to the firm’s

payoffs ensures that it recovers the cumulative investment
∫ τ
0 c∗t Vtdt with very high probability.

This prediction is also consistent with empirical evidence that the claims of VCs in liquidation are

at least as large as their original investments (see Section 3.4 of Kaplan and Stromberg, 2003).

The probability that the VC fund does not recover its cumulative investment is, however, not

negligible, especially if the project is terminated early because of poor intermediate realizations of

the termination payoff. This is consistent with the evidence in Cochrane (2005) that a nonzero

proportion (about nine percent) of VC projects fail to return their investments.

Another salient feature of venture capital agreements is the vesting of the EN’s stake in the firm

over time. In our framework, if the EN terminates the agreement at some date s < τ , his payoff is

Ps =
∫ s
0 [a∗t Vtdt + b∗t dVt], which is lower, in expectation, than his payoff Pτ if he were to continue

the relationship until the optimal termination time τ .
12We can generalize the model to allow for intermediate cash flows that are proportional to the termination payoffs.

In this generalization, the equilibrium contract continues to have the form (19). Because cash flows are proportional to
the termination payoffs, the EN’s payoff in each period is affine in the cash flow over the period. In this generalization,
the fixed component of the EN’s payoff could be more closely interpreted as a debt payment while the risky component
is the equity portion of the EN’s payoff for the period.
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4 Equilibrium Dynamics

We now investigate the properties of the equilibrium contract between the VC and the EN. Before

analyzing the general scenario with asymmetric beliefs, we briefly discuss two benchmark scenarios.

4.1 Symmetric Attitudes towards Risk and Symmetric Beliefs about Project

Quality—No Agency

In this scenario, the VC and the EN are both risk-neutral and have symmetric beliefs about the

project’s quality, i.e., λ = 0 and ∆t = 0 for all t. It follows that the rent from the EN’s optimism and

the cost of risk components of the VC’s periodic flow function (36) are zero. The third component,

the return on investment, is always maximized at b = 1 (Proposition 1). Therefore, the equilibrium

pay-performance sensitivities, the VC’s investment rates and the EN’s effort are constant through

time, and the VC’s investment rate is at its highest possible level. These results follow from the

fact that as the VC and the EN have symmetric attitudes towards risk and symmetric beliefs,

they effectively function as a monolithic agent. Moreover, the risk-neutrality of the VC/EN implies

that the risk (intrinsic and transient) of the project does not affect the investment rate, the EN’s

contract or his effort.

4.2 Symmetric Beliefs

In this scenario, the VC’s periodic flow function

Ft(b) = F (b) := −λsb + Kc(b) (38)

is independent of time. It is also strictly concave by Proposition 1. The time paths of pay per-

formance sensitivity, investment and effort are all constant; we let b∗p, c∗p and η∗p denote the corre-

sponding equilibrium values.

By Proposition 1 the optimal investment function achieves its maximum at b = 1, which implies

that c′(1) = 0. It then follows from (38) that F ′(1) < 0. Since F ′(b∗p) = 0, the strict concavity of

F (·) now guarantees that b∗p < 1. Both c∗p and η∗p, therefore, are less than the investment rate and

effort levels in the “no agency” scenario where the VC and the EN are both risk-neutral and have

symmetric beliefs about project quality.

4.3 Imperfect Information and Asymmetric Beliefs—The Actual Scenario

In the actual scenario, the VC’s periodic flow function may be expressed as

Ft(b) =
∆0

σ2
0

σ2
t b + F (b). (39)
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Since σt → 0, it follows from the Theorem of the Maximum that b∗t → b∗p, and thus (c∗t , η∗t ) → (c∗p, η∗p)

by continuity where (b∗p, c∗p, η∗p) are the equilibrium pay-performance sensitivity, investment rate, and

effort in the benchmark scenario with symmetric beliefs discussed in the previous subsection. We

now characterize the dynamics of these economic variables (conditional on the project’s continua-

tion).13

Theorem 2 (The Dynamics of the Equilibrium)

Conditional on the project surviving beyond date t, the EN’s pay-performance sensitivity, b∗t , the

VC’s investment rate, c∗t , and the EN’s effort, η∗t , all decrease monotonically with t and respectively

approach b∗p, c∗p and η∗p as t →∞.

The results of Theorem 2 hinge on the interplay among the value-enhancing effort by the EN

that is positively affected by his optimism, the costs of risk-sharing due to the EN’s risk aversion

that are negatively affected by the project’s intrinsic risk, and the effect of both the VC’s physical

capital investment and the EN’s effort on output. Since the EN is optimistic, he is willing to accept

a greater portion of the project’s risk so that his pay performance sensitivity and effort are initially

high. The passage of time lowers the degree of EN optimism as he revises his initial assessment of

project quality. The EN’s pay performance sensitivity and effort, therefore, decline over time. The

decreasing effort of the EN makes it optimal for the VC to also lower her capital investments.

4.4 Sensitivity of Equilibrium Dynamics

Theorem 3 below characterizes how the equilibrium paths of pay performance sensitivity, investment

rates and EN’s effort are affected by changes to underlying parameters.

Theorem 3 (Sensitivity of Equilibrium Dynamics)

The paths of the EN’s pay performance sensitivity, the VC’s investment rates and the EN’s effort

are each pointwise (a) decreasing functions of the EN’s cost of risk λ; (b) decreasing functions of

the initial transient risk σ0; (c) decreasing functions of the intrinsic risk s; (d) increasing functions

of the initial degree of asymmetry of beliefs ∆0; and (e) decreasing functions of the EN’s cost of

effort k.

The EN’s pay performance sensitivity declines with his cost of risk because an increase in the

EN’s cost of bearing risk increases the costs of risk-sharing between the VC and the EN. An increase

in the transient risk lowers the degree of asymmetry in beliefs at each date because the “signal to

noise ratio” is increased so that the EN “learns faster”. Hence, the economic rents to the VC in

each period from the EN’s optimism are lowered relative to the costs of risk-sharing so that the
13In Section 5 we show that the termination time is a random stopping time.

21



EN’s pay-performance sensitivity declines. An increase in the intrinsic risk, on the other hand,

increases the degree of asymmetry in beliefs at each date because the EN “learns more slowly” but

also increases the costs of risk-sharing. Under Assumption (2), the costs of risk-sharing outweigh

the benefits of the EN’s optimism so that the EN’s pay-performance sensitivity also decreases with

intrinsic risk. As a consequence, the investment rates and EN’s efforts also decline.

An increase in the EN’s optimism leads to a corresponding increase in the economic rents to

the VC in each period. The VC exploits this in each period by increasing the pay-performance

sensitivity and investment, thereby leading to an increase in effort by the EN. Under Assumption

1, the economic rents the VC can potentially capture due to the EN’s exaggerated assessment of

project quality are high compared with the costs of risk-sharing and inducing effort from the EN.

5 Project Duration

In this section, we investigate the optimal termination decision of the VC, which determines the

project’s duration. At any date t, we show that the VC’s continuation value is an increasing, lower

semi-continuous function of her current assessment, µV C
t , of the project’s quality. Since the VC

continues the project if and only if her continuation value is positive, there exists a trigger level at

each date such that she continues the project if and only if her current assessment of the project’s

quality exceeds the trigger.

Proposition 2

The optimal stopping policy for the VC is a trigger policy: there exist µ∗t such that the VC continues

the project if and only if µV C
t > µ∗t .

Let Y ∗
t dt := (c∗t

αη∗t
β − 0.5s2 − `t)dt. Since d lnVt = Y ∗

t dt + ξtdt by (2), it follows that

lnVt − ln V0 =
∫ t

0
d ln Vu =

(∫ t

0
Y ∗

u du
)

+
(∫ t

0
ξudu

)
.

Given the formula for µt given in (4), we may conclude that

µt ≥ µ∗t if and only if Vt ≥ V ∗
t ,

where

V ∗
t := V0 exp

[(∫ t

0
Y ∗

u du
)

+
(s2 + tσ2

0)µ
∗
t − s2µ0

σ2
0

]
.

The process {V ∗
t } represent the performance targets that the project must meet at each date to

ensure the continuation of the relationship. Thus, either the µ∗t or the V ∗
t may be used to define

the VC’s termination policy; the performance targets are more commonly used in practice.
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An increase in the EN’s initial degree of optimism about project quality increases the rents

that the VC is able to extract by exploiting the EN’s optimism thereby increasing her expected

continuation value at each point in time. Hence, it is optimal for the VC to prolong the project’s

duration. An increase in the EN’s cost of risk or cost of effort, however, increases the costs of

risk-sharing for the VC, thereby lowering her continuation value at each point in time. Hence, the

VC terminates the project earlier. The following result summarizes the effect of the EN’s initial

assessment of project quality, his cost of risk, and his cost of effort on the duration of the project.

Proposition 3

The project duration τ increases with the initial degree of asymmetry in beliefs, decreases with the

EN’s cost of risk, and decreases with the EN’s cost of effort.

The following result establishes that the project is terminated in finite time almost surely. The

result ensures that our assumption of a finite time horizon for the VC-EN relationship does not

entail a significant loss of generality.

Proposition 4

For any δ > 0 there exists a T > 0 such that if the maximum possible time horizon is T ′ ≥ T , then

the project duration is strictly less than T with probability greater than 1− δ.

6 Numerical Implementation and Calibration

We have developed a structural model of venture capital investment and described static and

dynamic properties of the equilibrium. Since there is no closed-form analytical characterization of

the optimal termination time described by Proposition 2, we use numerical simulation to explore

further implications of the model, including comparative static analyses. We use a discrete-time

approximation of the continuous-time model whose numerical implementation proceeds as follows.

We directly model the evolution of the VC’s current assessment of project quality µV C
t (see 5)

because, as explained in Section 5, it determines her continuation decision at any date t. In the

first stage, we approximate the evolution of µV C
t using a discrete lattice and derive the termination

triggers µ∗t . In the second stage, given the triggers obtained from the first stage, we use Monte

Carlo simulation to model the evolution of µV C
t and to obtain the key output variables of interest.14

Since Gompers (1995) reports that the average length of a round of VC financing is approximately

one year, we set the time period between successive dates in the discrete lattice to one year and

assume that it corresponds to a single round of financing.15

14The details of the numerical implementation are available upon request.
15We abstract from the possible staging of investments within a particular round of financing.
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We classify the parameters into two groups: “direct” parameters whose baseline values can

be set using guidance from previous empirical research, and “indirect” parameters whose values

are estimated by matching statistics predicted by the model to their observed values in the data.

We assume a production technology with constant returns to scale so that β = 1 − α. Cochrane

(2005) reports an average risk-free rate of 0.068 and finds that the average return on venture

capital investment in his sample is 15%. Accordingly, we set the risk-free rate r to 0.068 and

the benchmark return Rb to 15%. We assume a quadratic form l(t) = `1t
`2 for the loss function.

With this functional form, there are 11 parameters of the model, grouped into the “technology”,

“preference” and “belief” categories (see Table 1), whose baseline values we estimate by matching

the model’s predictions to the data.

In our estimation, we use a collection of 19 aggregate statistics on the distributions of invest-

ments, payoffs, risks and returns of venture capital projects reported in previous empirical research.

Sahlman (1990, Figure 1) reports eleven statistics describing the distributions of payoffs and in-

vestments for a sample of 383 venture capital projects. He reports the termination value and

investment (as proportions of the total termination value and investment for all the projects) for

projects whose returns are negative, between zero and two times their investment, between two and

five times their investment, between five and ten times their investment, and greater than ten times

their investment. He also reports the ratio of the total termination value to the total investment for

all projects in the sample.16 In addition to the Sahlman (1990) statistics, we also use statistics on

the risks and returns of venture capital projects reported in Cochrane (2005, Table 4)—specifically,

the returns and variances of the round-by-round returns of VC projects in each of the first four

rounds of financing.17 The 19 statistics used for our estimation are displayed in the first rows of

the two panels of Table 2.

We use the simulated method of moments to estimate the values of the 11 indirect parameters of

the model by matching the predicted values of the 19 statistics in Table 2 to their observed values.

The standard errors of the estimates are determined by parametric bootstrapping (see Davison and

Hinkley, 1997). As shown in Table 2, the model is able to closely match the observed statistics; the
16The proxies for the Sahlman statistics in our model are obtained as follows. Let Inv := V0 +

Pτ
t=0 c∗t Vt denote

the cumulative investment in a project and let Ret := Vτ/Inv represent the total return on investment. The Sahlman
statistics describing the project’s payoffs and investments in different regions of the distribution of returns are

E[Vτ 1(Ret ∈ Ij)]

E[Vτ ]
;

E[Inv 1(Ret ∈ Ij)]

E[Inv]
, j = 1, 2, 3, 4, 5,

where I1 = (−∞, 0], I2 = (0, 2], I3 = [2, 5), I4 = [5, 10), I5 = [10,∞). For the same sample, Sahlman also computes
E[Vτ/Inv], the average value per unit of investment.

17Because the time period between successive dates in the discrete lattice is one year, which corresponds to the

length of a single round of financing, the round-by-round returns of a VC project in the model are ln
�

Vt
Vt−1+ct−1Vt−1

�
,

1 ≤ t ≤ 4.
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key “belief parameters”, in particular, are estimated quite accurately.

The estimated value of the degree of asymmetry in beliefs ∆0 = 0.2457 is almost four times the

VC’s assessment of the mean project quality µV C
0 = 0.0660. The data, therefore, suggest that the

level of entrepreneurial optimism is very significant. In the next section, we confirm the substantial

impact of entrepreneurial optimism on the characteristics of venture capital relationships. The

baseline values of the average intrinsic risk s and transient risk σ0 are high, which confirms anecdotal

and empirical evidence that venture capital is risky and is characterized by significant uncertainty

about project quality.

7 Numerical Analysis

To explore the impact of EN optimism, we first analyze the model when the parameters take

their baseline values in Table 1. We then explore various comparative static relationships. In our

numerical analyses, we compare the actual scenario in which there are asymmetric beliefs and

agency conflicts with the two benchmark scenarios discussed in Section 4, namely, the no agency

and symmetric beliefs scenarios.

We compute three key output variables in each of the three scenarios. In what follows we

interpret the benchmark return on assets Rb as the project’s discount rate and use it to value the

project’s cash flows. The Project Value (at date zero) is the expected total payoffs to the firm less

the capital investments discounted at the rate Rb, and is given by

Project Value := EV C
0

[
e−RbτVτ −

τ−1∑

t=0

e−RbtctVt

]
. (40)

The VC Fund Stake (at date zero) is the project value less the termination payoff to the EN

discounted at the rate Rb, and is given by

VC Fund Stake := Project Value− EV C
0

[
e−RbτPτ

]
. (41)

We also compute the total discounted investment (at date zero) in the project, which is given by

Investment = EV C
0

[ τ−1∑

t=0

e−RbtctVt

]
. (42)

The expectations in (40)-(42) are with respect to the VC’s beliefs about project quality, which

are assumed to be correct. The termination payoff process evolves as in (1) with the contractual

parameters, (a∗, b∗, c∗), the EN’s effort, η∗, and the performance targets, V ∗, set to their equilibrium

values for the specific economic scenario (no agency, symmetric beliefs or actual) being analyzed.
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7.1 Baseline Analysis

Table 1 reports the Project Value, VC Fund Stake, and Investment as defined above for the baseline

model in the actual scenario and the two benchmark scenarios. The difference between the project

values (VC fund stakes) in the no agency and symmetric benchmark scenarios could be viewed as

the deadweight agency costs of risk sharing between the VC and EN from the perspective of the

firm (the VC fund). The difference between the project values (VC fund stakes) in the actual and

symmetric scenarios reflect the positive economic rents from EN optimism accruing to the firm

(the VC fund). EN optimism significantly mitigates the deadweight agency costs of risk-sharing

between the VC and the EN. With respect to project value, EN optimism lowers the agency costs

of risk sharing by over 26%. From the perspective of the VC fund, the benefit of EN optimism

is even greater. In fact, the VC Fund Stake in the actual scenario exceeds the VC Fund Stake in

the no agency scenario by over 21%. The VC exploits the EN’s optimism to her advantage and

disproportionately increases the VC fund’s share of the resulting surplus.

Table 1 also displays the distribution of the project’s duration. Here, p∗i := Pr{τ = i + 1}.
The project has a significantly greater probability (50.6%) of being terminated at the end of one

year as compared with the no agency scenario (32.7%). The benefits of EN optimism are, however,

reflected when comparing the actual to the symmetric scenario: the project is more likely to last

longer and, therefore, generate more value.

Table 3 reports the EN’s pay-performance sensitivities and the (proportional) investment rates

for the first four rounds. Consistent with Theorem 2, the EN’s pay-performance sensitivity and the

VC’s investment rate decline over time. The EN’s pay-performance sensitivity decreases sharply

across the four periods, while the proportional investment rates are practically constant. Successive

capital infusions by the VC, therefore, rapidly reduce the EN’s stake in the firm.

7.2 Comparative Statics

We now carry out several “comparative statics” analyses by varying parameters about their baseline

values (+/- 50% in increments of 2.5%). We explore the comparative statics of the Project Value,

the VC Fund Stake, Investment (defined in 40, 41 and 42) and the Expected Project Duration with

respect to four parameters of interest: the physical capital intensity of the project’s production

function, α, the initial transient risk, σ0, the intrinsic risk, s, and the initial degree of asymmetry

in beliefs, ∆0.
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The Effects of Human and Physical Capital Intensity

As shown in Figure 1, Project Value, the VC Fund Stake, Investment and Expected Project Du-

ration decline with the project’s physical capital intensity. In our numerical analyses, we assume

a constant returns-to-scale production function so that α + β = 1. Hence, as the physical capital

intensity increases, the human capital intensity decreases, which reduces the relative contribution

of the EN’s effort to output.

As shown by Table 4, the VC’s proportional investment rate in the project in any round (con-

ditional on continuation) increases as the physical capital intensity increases. However, the VC’s

dollar investment in any round i is c∗i−1Vi−1. As the physical capital intensity increases, the lower

surplus generated by the EN’s effort causes the termination payoff process to decline path-wise and

the termination probabilities to increase, i.e., the project terminates earlier. Hence, even though

the proportional investment rates conditional on continuation increase with the physical capital

intensity, the total investment over the duration of the project declines. Moreover, consistent with

the fact that the relative contribution of the EN’s effort declines with the physical capital intensity,

the EN’s pay-performance sensitivities in each round decline as shown by Table 4. Because the

relative contribution of the EN’s effort to output declines with the physical capital intensity, the

deadweight agency costs of risk-sharing between the VC and the risk-averse EN also decline. The

above results lead to the following testable implications:

Testable Implications 1

a) Project Value, the VC Fund Stake, Investment and Expected Project Duration decrease with

the physical capital intensity of the project and increase with its human capital intensity.

b) The EN’s pay-performance sensitivity in any round decreases with the project’s physical capital

intensity and increases with its human capital intensity. The VC’s proportional investment rate

decreases with the project’s physical capital intensity and increases with its human capital intensity.

The Effects of Transient Risk

An increase in the transient risk has potentially opposing effects on Project Value, the VC Fund

Stake, Investment and Expected Project Duration. On the one hand, the EN “learns more quickly”

due to an increase in the “signal to noise” ratio (see 7). The faster decline of the EN’s optimism

lowers the economic rents that the VC could extract from the EN’s optimism. On the other

hand, an increase in the transient risk increases the likelihood of both high and low realizations of

project quality. Since the VC can limit her downside by terminating the relationship if intermediate

signals of project quality are sufficiently poor, the option value of the project increases. As we see
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in Figure 2, the positive effect of the option value dominates the negative effect on the power of

incentives to the EN, thereby leading to a sharp increase in the Project Value, the VC Fund Stake

and Investment. The Expected Project Duration, however, is non-monotonic: it decreases with

transient risk below a threshold and then increases.

Table 4 further illustrates the positive effect of the option value of continuation. The probability

of the project being continued beyond the third round dramatically increases. (It also shows that

with a higher likelihood of a low realization, the probability of terminating at the end of round 1

increases.) The EN’s pay-performance sensitivity in any round declines with transient risk, while

the VC’s proportional investment rates are almost constant.

Consistent with the evidence in Cochrane (2005), Figure 2 reflects the highly skewed nature of

the payoffs from venture capital investments and the tremendous value that could be generated by

the presence of uncertainty about the quality of innovative ventures. The increase in the VC Fund

Stake with transient risk is consistent with empirical evidence that VCs have significant incentives

to finance highly innovative projects compared with mature or “imitating” projects because there

is greater uncertainty about the quality of innovative projects (Hellman and Puri, 2000).

The above results lead to the following testable implications:

Testable Implications 2

a) Project Value, the VC Fund Stake and Investment increase with the project’s transient risk,

while the Expected Project Duration varies non-monotonically in a U-shaped manner.

b) The EN’s pay-performance sensitivity in any round declines with the project’s transient risk,

while the VC’s proportional investment rate does not vary significantly.

The Effect of Intrinsic Risk

The benchmark return Rb can vary with intrinsic risk. For concreteness, we assume that the

benchmark return is the following affine function of the intrinsic risk:

Rb(s) := r +
R̂b − r

ŝ
s, (43)

where R̂b and ŝ denote the baseline values of the benchmark return and the intrinsic risk reported

in Table 1 and r is the risk-free rate set to 0.068 as reported in Cochrane (2005).

The effects of intrinsic risk are not a priori obvious because an increase in intrinsic risk has

several competing effects. First, in contrast to the effect of transient risk, an increase in the intrinsic

risk causes the EN to “learn more slowly” because the “signal to noise” ratio decreases (see 7). The

slower convergence of the EN’s beliefs has a positive effect on the rents the VC is able to extract

from the EN’s optimism. Second, an increase in the intrinsic risk increases the costs of risk sharing
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between the VC and the EN, which has a negative effect on Project Value, VC Fund Stake, and

Investment. Third, the benchmark return Rb(s) decreases with intrinsic risk, which has a negative

effect on Project Value and the VC Fund Stake. Fourth, the effect of intrinsic risk on the option

value of continuing the relationship is non-monotonic. The standard deviation of the assessment

of project quality, σµ
t , given by (6) decreases with the intrinsic risk before time t(s) := (s/σ0)2

and increases with the intrinsic risk after this time.18 Since t(s) increases with s, an increase in s2

delays the benefits of the option value of continuing the relationship.

As shown in Figure 3, Project Value, the VC Fund Stake, Investment and the Expected Project

Duration decline with intrinsic risk. The increase in the cost of risk, the lower economic rents and

the higher discount rate outweigh the potential increases in the option value. These results lead to

the following testable implications:

Testable Implications 3

a) Project Value, VC Fund Stake, Investment and Expected Project Duration all decrease with the

project’s intrinsic risk.

b) The EN’s pay-performance sensitivity in any round decreases with the project’s intrinsic risk,

while the VC’s proportional investment rate does not vary significantly.

The Effect of the Degree of Asymmetry in Beliefs

The increase in Project Value, VC Fund Stake, Investment and the Expected Project Duration

with the degree of asymmetry in beliefs shown in Figure 4 illustrate the positive effects of the EN’s

optimism. An increase in the degree of asymmetry in beliefs mitigates the costs of risk sharing

between the VC and the EN thereby enhancing the power of incentives that could be provided by

the EN. As shown by Table 4, the EN’s pay-performance sensitivity in any round increases with the

degree of asymmetry in beliefs, but the VC’s proportional investment rate is relatively insensitive.

These results lead to the following testable implications:

Testable Implications 4

a) Project Value, VC Fund Stake, Investment and Expected Project Duration all increase with the

initial degree of asymmetry in beliefs about project quality.

b) The EN’s pay-performance sensitivity in any round increases with the initial degree of EN

optimism, while the VC’s proportional investment rate does not vary significantly.

Previously reported empirical evidence is indirectly consistent with the implication a) above.

The positive effects of EN optimism on project value are consistent with the evidence reported in
18Follows directly from dσµ

t /ds = σ2
0(tσ2

0 − s2)/(s2 + tσ2
0)2.
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Gelderen et al (2005). The positive relation between duration and the degree of EN optimism is

consistent with the evidence in Kaplan and Stromberg (2003) that experienced entrepreneurs, who

are likely to have more realistic beliefs, receive fewer rounds of financing.

7.3 Implied Discount Rate and Optimism Ratio

There is considerable empirical and anecdotal evidence that VCs typically use high discount rates

in the range between 35% and 50% to value projects (see Sahlman, 1990, Gladstone and Gladstone,

2002). Sahlman (1990) suggests that high discount rates could be a mechanism that VCs use to

adjust optimistic projections by ENs. We now explore whether the levels of EN optimism predicted

by the model could lead to the discount rates observed in reality. We calculate the implied discount

rate (IDR) of a project as the discount rate the VC would use to obtain her valuation of the fund’s

stake defined in (41) if the project’s intrinsic quality were (hypothetically) distributed according to

the EN’s beliefs. More precisely, the implied discount rate βV C solves:

E0

[
e−βV Cτ (Vτ − Pτ )−

τ−1∑

t=0

e−βV CtctVt

∣∣∣ Θ ∼ N(µEN
0 , σ2

0)
]

= VC Fund Stake. (44)

Figure 5 reports the IDR’s for varying values of α, σ0, s, ∆0. Except for the scenario where ∆0

varies, all IDR’s lie in a very narrow range around 40%. These values for the IDR’s are consistent

with the discount rates reported in Table 6 of Sahlman (1990) that VC’s use to assess the value

of a new venture. Because ∆0 is, in effect, the entrepreneurial optimism premium, the variation

of the IDR’s with ∆0 is approximately linear. The implied discount rates are much higher than

the average return on VC projects reported in Cochrane (2005) because they adjust for the EN’s

optimistic projections of the project’s payoffs.

The fact that our model, which is calibrated to the data on the distributions of investments and

payoffs in Sahlman (1990) and VC projects’ risk and return data in Cochrane (2005), generates

implied discount rates consistent with those reported in Sahlman (1990) strongly suggests that

entrepreneurial optimism, in fact, explains the discount rates used by VCs in reality. Moreover,

the numerical results suggest that an IDR of 40% is a remarkably good rule-of-thumb to value the

average venture capital project with entrepreneurial projections of payoffs.

An alternative to using higher discount rates to adjust optimistic EN cash flow projections is

to simply lower the cash flow projections and discount the cash flows at the usual discount rate

to value projects. Gladstone and Gladstone (2002, p. 93) report that, on average, VCs halve EN

payoff projections so that the EN Optimism Ratio is approximately two on average. In our model,
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the Optimism Ratio is given by

Optimism Ratio : =
VC Fund Stake under EN Beliefs
VC Fund Stake under VC Beliefs

=
EΘ=N(µEN

0 ,σ2
0)

[
e−Rbτ

EN
(Vτ − Pτ )−

∫ τEN

0 e−RbucuVudu
]

EΘ=N(µV C
0 ,σ2

0)

[
e−Rbτ (Vτ − Pτ )−

∫ τ
0 e−RbucuVudu

] . (45)

In the numerator (denominator) on the right-hand side of the second equality above, the project’s

intrinsic quality Θ is distributed according to the EN’s (VC’s) prior and its termination payoff

and investments are discounted at the benchmark rate Rb. The superscript on the termination

time τEN in the numerator emphasizes that the project’s termination time (in the hypothetical

scenario in which its intrinsic quality is distributed according to the EN’s beliefs) differs from the

termination time in the actual scenario (where intrinsic quality is distributed according to the VC’s

beliefs).

Figure 6 shows the variation of the Optimism Ratio with α, σ0, s, ∆0. The Optimism Ratios

mostly range between 2 and 3. When the parameters take their baseline values, the Optimism Ratio

is 2.36. The range of Optimism Ratios predicted by the model are consistent with the anecdotal

evidence in Gladstone and Gladstone (2002, p. 93) that the Optimism Ratio is approximately 2.

Not surprisingly, the Optimism Ratio increases with the degree of EN optimism. The effects of

transient risk, intrinsic risk and capital intensity on the Optimism Ratio are more subtle. By the

intuition for Figure 2, an increase in the transient risk increases the project value because of the

increase in the option value of continuing the relationship. Because the likelihood of negative signals

that force early termination is significantly lower, the increase in the option value when the project

value is (hypothetically) distributed according to the EN’s optimism beliefs is greater relative to

the actual scenario where it is distributed according to the VC’s beliefs. Hence, an increase in the

transient risk increases the numerator of (45) to a greater extent than the denominator so that the

Optimism Ratio increases. As discussed in the intuition for Figure 3, a decrease in the intrinsic

risk decreases the costs of risk sharing and generally increases the option value of continuation.

The positive effects of a decrease in the intrinsic risk are relatively greater when the project quality

is (hypothetically) distributed according to the EN’s beliefs so that the Optimism Ratio increases

with a decrease in the intrinsic risk. By the intuition for Figure 1, a decrease in the physical capital

intensity is accompanied by an increase in the human capital intensity that raises the project value.

The positive effects of an increase in the human capital intensity are relatively greater when the

project quality is distributed according to the EN’s beliefs so that the Optimism Ratio increases

with human capital intensity and decreases with physical capital intensity.

31



7.4 Internal Rate of Return

The venture capital industry typically uses internal rates of return to evaluate projects. In our

model, a project’s Internal Rate of Return (IRR) is the value R∗ that solves the following equation:

E0

[
e−R∗τ (Vτ − Pτ )−

τ−1∑

t=0

e−R∗tctVt

∣∣∣ Θ ∼ N(µV C
0 , σ2

0)
]
− V0 = 0. (46)

Figure 7 shows the variation of the IRR’s. The IRR in the baseline scenario is 58%, which is

consistent with the average internal rate of return of venture capital projects reported in Gladstone

and Gladstone (2002). By Figure 3, the positive effects of an increase in the transient risk on

the VC fund stake are much greater relative to its effects on investment. The IRR, therefore,

increases with transient risk. Similarly, as shown in Figures 1 and 3, an increase in the project’s

physical capital intensity and intrinsic risk has a more pronounced negative effect on the VC fund

stake than investment so that the IRR decreases. By Figure 3, the marginal effects of the degree

of EN optimism on the VC fund stake and investment are approximately equal so that the IRR

is relatively insensitive to EN optimism. The findings of Figure 7 lead to the following testable

implications:

Testable Implications 5

The Internal Rate of Return of a project increases with its transient risk, decreases with its intrinsic

risk and physical capital intensity, but does not vary significantly with the degree of EN optimism.

8 Conclusions

We develop a dynamic, structural model to obtain quantitative assessments of the effects of en-

trepreneurial optimism on the characteristics of venture capital relationships. Our principal-agent

framework incorporates several key features of VC relationships, namely, the presence of risky

payoffs and agency conflicts, uncertainty and asymmetric beliefs about project quality, and the im-

portance of staged investment and dynamic contracting in mitigating potential inefficiencies arising

from these imperfections. Consistent with observed contracts, the optimal dynamic contracts be-

tween VCs and ENs have “debt” and “equity” components. The EN’s stake in the project vests

over time, and the VC’s claim allows her to recover her investments with high probability. We show

that EN optimism is a key determinant of the characteristics of VC relationships—the value that

they generate, the pattern of VC investments over time, and the structure of VC-EN contracts.

We derive empirically testable implications for the effects of projects’ intrinsic risk, transient

risk, physical and human capital intensity as well as the degree of EN optimism on the duration

and economic value of VC relationships. The interplay among the intrinsic and transient risks of
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projects and the degree of EN optimism leads to significant heterogeneity in contractual structures

and the patterns of staged VC investment, which is consistent with empirical evidence. The intrinsic

and transient risks of projects have opposite effects on the durations and economic values of VC

relationships. The value of the project and the expected payoff to the VC are actually enhanced

when there is greater noise in the perception of project quality.

With significantly fewer free parameters or degrees of freedom, the model is able to closely match

a disparate set of statistics on the distributions of investments, payoffs, risks and returns of venture

capital projects as well as the discount rates used to value them. In particular, our structural

approach suggests that entrepreneurial optimism is, in fact, significant enough to generate the huge

discrepancy between discount rates used by VCs to value projects (which adjust for optimistic

projections by ENs) and the average expected return of VC projects.

The tractability of the model, coupled with the fact that it is able to match disparate statistics

pertaining to the risks and returns of VC projects as well as the discount rates used to value them,

suggests that it could be useful as a tool to value risky projects when agents have asymmetric beliefs

and have conflicts of interest. Although we focus on venture capital investment, our framework

is more generally applicable to other dynamic principal-agent settings with double-sided moral

hazard, risk, imperfect information, and asymmetric beliefs. For example, our framework could be

applied to study the relationship between the shareholders of a firm and its manager or employees,

the financing of research and development, and delegated portfolio management (mutual funds,

hedge funds). We explore these applications in future research.
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Appendix A

The Relationship between Outside Investors and the VC

We present one possible extension of the model in which the VC’s compensation structure

described in Section 2.3 is endogenously derived. We model the relationship between the VC and

outside (existing and potential) investors. At each date, the VC raises capital for her investments.

Let At denote the total capital the VC is able to procure at date t, which we derive endogenously in

the following. The VC has operating costs C(At), where C(·) is nonnegative, strictly increasing and

convex. The VC’s compensation in each period is a fixed proportion f > 0 of the total capital she

manages.19 The expected excess return on assets before operating costs and the VC’s compensation

is EV C
t [ExROAt+dt], where ExROAt+dt is given by (10). Hence, the expected excess return on

assets net of operating costs and fees or the expected net excess return is

AtE
V C
t [ExROAt+dt]− fAtdt− C(At)dt

At
. (47)

Outside investors competitively supply capital to the VC at each date. In equilibrium, therefore,

investors allocate capital until the expected excess return net of operating costs and the VC’s

compensation is zero. It then follows directly from (47) that, in equilibrium, the capital obtained

by the VC, A∗t (f) (the argument indicates the dependence of the capital raised on the management

fee) satisfies

EV C
t [ExROAt+dt] = f +

C(A∗t (f))
A∗t (f)

. (48)

Since C(0) = 0 and C(·) is strictly convex, C(x) < xC ′(x). Therefore, d
dx

C(x)
x = xC′(x)−C(x)

x2 > 0

so that C(x)
x is strictly increasing. It then follows from (48) that the capital under management

and the VC’s compensation are increasing in the expected excess return on assets. If we assume

a quadratic operating cost function C(x) = Mx + Nx2 for analytical convenience, the capital ob-

tained by the VC and her compensation are affine functions of the expected excess return on assets.

The Representation of the EN’s Objective as a Recursive Utility

We show that the EN’s objective as described by (13) or (14) actually belong to the general

class of recursive or stochastic differential utilities (see Duffie and Epstein, 1992). If

Ut = EEN
t

[
e−r(τ−t)Pτ −

∫ τ

t
e−r(s−t)kηγ

s Vsds
]

(49)

19We can extend the model to allow for the VC to optimally and dynamically determine the fee at the beginning
of each period. As in the simpler setting analyzed here, we can show that the VC’s compensation in each period is
increasing in the expected excess return on assets so that the main implications of the theory remain unaltered.
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is the EN’s conditional expected utility at date t, then Ut satisfies the following backward stochastic

differential equation or BSDE (see Ma and Yong, 1999):

dUt = (rUt − kηγ
t Vt)dt + ZtdBEN

t = (rUt − kηγ
t Vt − λZt)dt + ZtdBt,

Uτ = Pτ (50)

The second equality above follows from (16). The process Zt is {Ft}-adapted and the pair of

processes (U,Z) is the solution of the BSDE (50). From (50), the EN’s conditional expected utility

Ut has the general recursive representation

Ut = Uτ +
∫ τ

t
f(Us, Zs)ds−

∫ τ

t
ZsdBs,

f(Us, Zs) = −rUs + kηγ
s Vs + λZs, (51)

where the function f is the aggregator (see Duffie and Epstein, 1992, Ma and Yong, 1999).

Appendix B: Proof of Theorem 1

A rigorous proof of Theorem 1 requires a precise interpretation of equation (1), which describes

the evolution of the termination payoff process. We consider the termination payoff process V (·)
to be a given random process on a probability space with investment and effort altering the prob-

ability distribution of this process. The uncertainty is represented by a filtered probability space

(Ω,F ,Ft,Q) on which is defined a standard Brownian motion B̂. Letting {F bB
t } denote the com-

plete and augmented filtration generated by B̂, and H a σ-field independent of F bB
T , the complete

information filtration is the augmentation of the filtration H×{F bB
t }. The role of H is to allow het-

erogeneity in the VC’s and EN’s priors. The EN’s and VC’s beliefs are represented by probability

measures Q`, ` ∈ {V C,EN} equivalent to Q, which may disagree on H. B̂ is a Brownian motion

under both these probabilities. Consider the process V (·) defined by

dV (t) = sV (t)dB̂(t), (52)

where s is the intrinsic risk of the project. We use the Girsanov transformation to obtain new

probability measures on (Ω,F) such that the process V (·) evolves as in (1).

Θ is an H-measurable normal random variable with variance σ2
0 and mean µ`

0 under measure Q`.

Suppose that η(·) and c(·) are strictly positive, {Ft}-adapted, square integrable stochastic processes

(under the measures QV C and QEN ) defined on the time horizon [0, T ] describing the EN’s choices

of effort and the VC’s choices of investments over time. Recall that l(·) is a deterministic process
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describing the operating costs of the firm. Define the processes

ζ`
c,η(t) := exp

[ ∫ t

0
(Θ + Ac(u)αη(u)β − l(u)− λs1`=EN )s−1dB̂(u)−

1
2

∫ t

0
(Θ + Ac(u)αη(u)β − l(u)− λs1`=EN )2s−2du

]
, (53)

B`
c,η(t) := B̂(t)−

∫ t

0
(Θ + Ac(u)αη(u)β − l(u)− λs1`=EN )s−1du . (54)

The process ζ`
c,η(·) is a positive martingale.20 Define the new measure Π`

c,η by

dΠ`
c,η

dQ`
= ζ`

c,η(T ). (55)

By Girsanov’s theorem (see Oksendal, 2003), the process B`
c,η(·) is a Brownian motion under the

measure Π`
c,η. Further, under this measure, the process V (·) evolves as

dV (t) = [Θ + Ac(t)αη(t)β − l(t)− λs1`=EN ]V (t)dt + sV (t)dB`
c,η(t) . (56)

Equation (56) describes the evolution of the termination payoff process under the actual probability

and the EN’s subjective valuation probability, and is identical to equations (1) and (15), but with the

Brownian motion and the probability measures representing the VC’s and EN’s beliefs depending

on the investment and effort processes. It is important to keep in mind that V (·) is a fixed process

whose sample paths are not affected by investment and effort. Investment and effort, however, alter

the probability distribution of the sample paths of V (·).
For future reference, we note that the process

dW `
c,η(t) := s−1[d lnV (t)− (Ac(t)αη(t)β − 0.5s2 − λs1`=EN − l(t))dt− µ`

tdt] (57)

is an {Ft}-Brownian motion with respect to the probability measure Π`
c,η. Moreover, the complete

and augmented filtration generated by this Brownian motion is {Ft}. Recall that the EN’s and

VC’s mean assessments of project quality Θ at date t, µEN
t , µV C

t in (2) and (4), do not depend on

the effort and investment processes because they are observable. Let τ ≤ T be an {Ft}-stopping

time denoting the termination time of the VC-EN relationship. Let c(·), η(·) and η̂(·) be strictly
20The processes are assumed to satisfy the Novikov condition (see Oksendal, 2003):

E` exp[
1

2

Z T

0

(Θ + Ac(u)αη(u)β − λs1`=EN − l(u))2s−2du] < ∞, ` ∈ {V C, EN} .

Because the equilibrium investment and effort processes described in Theorem 1 are deterministic and Θ is a normal
random variable, the Novikov condition is satisfied by these processes. In fact, we do not need to assume that feasible
(not necessarily optimal) investment and effort processes satisfy the Novikov condition for our analysis to be valid; we
only require that they be square-integrable. In this case, the process ζc,η(·) is only guaranteed to be a local martingale
and the measure Π`

c,η is a finite measure, but not necessarily a probability measure. Our analysis, however, only
requires that Π`

c,η be a finite measure. Since the Novikov condition is satisfied by the equilibrium investment and
effort processes, the measure corresponding to the equilibrium processes is a probability measure.
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positive {Ft}-adapted square-integrable processes on [0, τ ].21 A contract is represented by the triple

(P (·), c(·), τ). The processes below are required in the sequel.

We define the cumulative value process of the EN

UP,c,τ (η(·); t) := EEN
c,η

[
e−r(τ−t)P (τ)−

∫ τ

0
e−r(u−t)kη(u)γV (u)du | Ft

]
, (58)

which is the EN’s conditional valuation of his future payoffs at any date including the sunk disutili-

ties of prior effort from a given contract (P (·), c(·), τ) when his effort choices over time are given by

the process η(·). Here, E`
c,η[· | Ft]; ` ∈ {V C,EN} denotes conditional expectation at date t under

the probability measure Π`
c,η defined in (55). We note that the discounted cumulative value process

of the EN, e−rtUP,c,τ (η(·); t), is a square-integrable {Ft}-martingale under the measure ΠEN
c,η .

Given a contract (P (·), c(·), τ) and effort process η(·), the EN’s certainty equivalent process is

RP,c,τ (η(·); t) := U (P,c,τ)(η(·); t) +
∫ t

0
e−r(u−t)kη(u)γV (u)du , t ∈ [0, τ ] . (59)

The EN’s adjusted cumulative value process represents the cumulative value process of the EN when

he exerts effort η(s); s ≤ t and effort η̂(s); s ≥ t. Formally, we define

YP,c,τ (η(·); t; η̂(·)) :=

EEN
c,η

[
e−r(τ−t)P (τ)− ∫ t

0 e−r(u−t)kη(u)γV (u)du− ∫ τ
t e−r(u−t)kη̂(u)γV (u)du | Ft

]
. (60)

The EN’s maximum conditional valuation process represents the EN’s maximum conditional valu-

ation of his future payoffs at date t given that he has exerted effort η(s); s ≤ t and the contract is

(P (·), c(·), τ). Formally, we define

ZP,c,τ (η(·); t) := supbη(·)YP,c,τ (η(·); t; η̂(·)) . (61)

Implementation of a Given EN Effort Process

To simplify the subsequent notation, we drop the subscripts denoting the dependence of the

processes defined in (58)-(61) on the contract (P (·), c(·), τ). A contract (P (·), c(·), τ) is said to im-

plement a given effort process η∗(·) if and only if P (0) = V (0) and, given the contract (P (·), c(·), τ),

the EN’s optimal effort choices are given by the process η∗(·). The following Lemma characterizes

the contract (P (·), c(·), τ) that implements a given effort process η∗(·) of the EN.

Lemma 1

a) A contract (P (·), c(·), τ) implements η∗(·) only if P (0) = V (0), P (t) = R(η∗(·); t) a.s., and the

certainty equivalent process R(η∗(·); ·) satisfies the following stochastic differential equation:

dR(η∗(·); t) = a(t)V (t)dt + b(t)dV (t), (62)
21These processes are assumed to satisfy the Novikov condition—see footnote 20.
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where

b(t) =
γk

Aβc(t)α
η∗(t)

γ−β
β , (63)

a(t) := kη∗(t)γ − b(t)
(
Ac(t)αη∗(t)β − λs− l(t) + µEN

t

)
+ r

Pt

Vt
. (64)

b) The EN’s continuation value defined in (17) is zero at each date.

Proof. a) When the certainty equivalent process R(η∗(·); t) corresponding to the given effort

process η∗(·) evolves as in (62), we show below that the EN’s optimal effort choices after any given

date t coincide with the process η∗(·) regardless of his prior history of effort choices. It will then

follow that the process η∗(·) describes the EN’s optimal effort choices over the entire interval [0, τ)

so that the contract (P (·), c(·), τ) implements the given effort process η∗(·).
By the principle of optimality of dynamic programming (Oksendal, 2003), the effort η∗(t) is

optimal for the EN at date t for any prior effort process η(·) only if 22

η∗(t) = argmaxη(t)E
EN
c,η [e−rdtZ(η(·); t + dt)− Z(η(·); t) | Ft]

= argmaxη(t)E
EN
c,η [dZ(η(·); t)− rZ(η(·), t)dt | Ft] . (65)

In what follows, we derive the infinitesimal change dZ(η(·); t) and then use (65) to establish the

statements of the Lemma. It follows from the definition (61) that

Z(η(·); t) = supη′(·)Y (η(·); t; η′(·))

= supη′(·)Y (η∗(·); t; η′(·)) + k

∫ t

0
e−r(s−t)[η(s)γ − η∗(s)γ ]V (s)ds

= Z(η∗(·); t) + X(η(·); t) , (66)

where we define the stochastic process

X(η(·); t) := k

∫ t

0
e−r(s−t)[η(s)γ − η∗(s)γ ]V (s)ds . (67)

The second equality in (66) follows because the contract P (.) only depends on the history of the

termination payoff process, and because the EN’s effort choices are observable. Hence, his prior

effort choices over the interval [0, t] do not affect his optimal effort choices over the interval [t, τ ].

It may be readily verified from (66) and (67) that

dZ(η(·); t) = dZ(η∗(·); t) + k(η(t)γ − η∗(t)γ)V (t)dt + rX(η(·), t)dt . (68)

Since the process η∗(·) represents the EN’s optimal effort choices by hypothesis, it follows that

Z(η∗(·), t) = U(η∗(·), t). (69)
22Since the conditional expectation above only depends on the process η(·) prior to date t, which is an arbitrary

process anyway, we avoid complicating the notation unnecessarily in (65) by using the same letter to denote a
candidate (possibly sub-optimal) level of effort in the infinitesimal interval [t, t + dt].
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Hence, the process e−r(.)Z(η∗(·), ·) is a square-integrable {Ft}-martingale under the measure ΠEN
c,η∗ .

It follows from (57) and the martingale representation theorem (see Oksendal, 2003) that there

exists a square-integrable, {Ft}-adapted process ω(·) such that23

dZ(η∗(·); t)−rZ(η∗(·); t)dt = ω(t)dWEN
c,η∗ (t) = ω(t)s−1[d ln V (t)−(Ac(t)αη∗(t)β−λs−l(t))dt−µEN

t dt] .

(70)

Since the expectation in the dynamic programming equation (65) is taken under the measure ΠEN
c,η ,

it follows from (57) and (70) that Z(η∗(·); t) evolves under this measure as

dZ(η∗(·); t) = rZ(η∗(·); t)dt + ω(t)s−1Ac(t)α(η(t)β − η∗(t)β)dt + ω(t)dWEN
c,η (t) . (71)

Substituting (71) in (68) yields

dZ(η(·); t) = rZ(η∗(·); t)dt + ω(t)s−1Ac(t)α(η(t)β − η∗(t)β) + k(η(t)γ − η∗(t)γ)V (t)dt

+ rX(η(·), t)dt + ω(t)dWEN
c,η (t) . (72)

Having derived the requisite expression for dZ(η(·); t), we substitute it in (65) to obtain

η∗(t) = argmaxη(t)[ω(t)s−1Ac(t)αη(t)β + kη(t)γV (t)] . (73)

It then follows that the effort η∗(t) is optimal over the interval [t, t + dt] only if

ω(t)
V (t)

= − ks

Ac(t)α

γ

β
(η∗(t))

γ−β
β . (74)

From the definition of the certainty equivalent process R(η∗(·); ·) in (59), and using (69), we have

R(η∗(·); t) = Z(η∗(·); t) +
∫ t

0
e−r(u−t)kη∗(u)γV (u)du . (75)

Using (70)-(72) and (74), we obtain

dR(η∗(·); t) = a(t)V (t)dt + b(t)dV (t), (76)

where b(t) and a(t) are given by (63) and (64), respectively, as claimed.

Since the EN’s maximum expected future utility from continuing the relationship at date t ≤ τ

is R(η∗(·); t)) and since his utility from terminating the relationship is P (t), the EN continues the

relationship until time τ only if P (t) ≤ R(η∗(·); t) at each date t. Replacing t with the stopping time

τ and η(·) with η∗(·) in (58) and (59), we see that P (τ) = R(η∗(·); τ). Hence, P (t) = R(η∗(·); t)
for any time t such that τ = t has positive probability. We conclude that P (t) = R(η∗(·); t) almost

surely. Since the initial termination payoff equals the seed investment made by the VC, P (0) = 0.
23Identity (70) is an almost sure relation that holds under all equivalent probability measures on the probability

space. It is only under the measure ΠEN
c,η∗ defined in (55) that the process [dV (t)− (Ac(t)αη∗(t)β − l(t))dt− µEN

t dt]
is the increment of a Brownian motion.
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b) This result follows immediately from part a).

As a consequence of Lemma 1, we can restrict consideration to contracts P where

dP (t) = a(t)V (t)dt + b(t)dV (t) (77)

where b(t) > 0. Further, it follows from (63) that there is a one-one correspondence between the

pay-performance sensitivity b(t) and the EN’s optimal effort η(t) at date t.

Optimal Contract Choice by VC

By (63) and (64), a feasible contract is completely described by the investment process c(·), the

processes a(·), b(·) describing the fixed and proportional components of the EN’s compensation and

the termination time τ . Define

Ma,b,c,τ (0) = EV C
c,η

[
e−rτ (V (τ)− P (τ))−

∫ τ

0
e−rsc(s)V (s)ds

]
(78)

as the VC’s discounted expected future payoff at date 0 if she chooses a contract (P (·), c(·), τ) ≡
(a(·), b(·), c(·), τ). The VC’s contract choice problem is then the following stochastic control problem

(a∗(·), b∗(·), c∗(·), τ∗) = argmax(a,b,c,τ)Ma,b,c,τ (0). (79)

Let the “state” of the system at any date t be described by the ordered pair (t, µV C
t ). We

first restrict consideration to Markov controls where a(t), b(t), c(t) and the decision to terminate

the relationship only depend on the current state (t, µV C
t ). We derive the optimal Markov control

policy. We then appeal to the verification theorem of dynamic programming (see Theorem 11.2.3 of

Oksendal, 2003) to conclude that the optimal Markov control policy is, in fact, the optimal control

policy over the entire space of admissible {Ft}-adapted controls.

We note from (63) and (64) that the control a(·) is, in fact, determined by the controls b(·), c(·)
and the state of the system. Hence, a Markov control policy is completely described by (b(·), c(·), τ).

For simplicity, we abuse notation by denoting the VC’s continuation value in state (t, µV C
t ) from

adopting the Markov control policy (b(·), c(·), τ) by

Mb,c,τ (t, µV C
t ) = EV C

t;c,η

[
(e−r(τ−t)V (τ)− V (t))− (e−r(τ−t)P (τ)− P (t))−

∫ τ

t
e−r(s−t)c(s)V (s)ds

]
,

(80)

where η(·) is determined by inverting (63). Let M∗(t, µV C
t ) be the optimal continuation value

within the space of Markov controls and (b∗(·), c∗(·), τ∗) be the optimal Markov control policy.

Suppose that the VC deviates from the optimal policy over the infinitesimal time interval [t, t+ dt]
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by choosing the controls (̂b(t), ĉ(t)), Let M̂(t, µV C
t ) denote the VC’s continuation value at date t

under this deviated policy. It follows from (77) and (80) that

M̂(t, µV C
t ) = EV C

t;c,η

[
− â(t)V (t)dt + (1− b̂(t))dV (t)− ĉ(t)V (t)dt + e−rdtM∗(t + dt, µV C

t+dt)
]

. (81)

By (56), we have

M̂(t, µV C
t ) = EV C

t;c,η

[
− â(t)V (t)dt + (1− b̂(t))[µV C

t + Aĉ(t)αη̂(t)β − l(t)]V (t)dt− ĉ(t)V (t)dt

+ e−rdtM∗(t + dt, µV C
t+dt)

]
, (82)

where η̂(t) is given by (63) with b̂(t) replacing b(t). Since the VC’s investment and EN’s effort are

observable, the VC’s assessment µV C
t+dt of project quality at date t+dt is independent of the choices

of controls (̂b(t), ĉ(t)). Hence, the function M∗(t + dt, µV C
t+dt) is also independent of these choices.

By the principle of optimality of dynamic programming, the optimal controls (b∗(t), c∗(t)) at date

t must maximize the “flow” term in (82), that is,

(b∗(t), c∗(t)) = argmaxbb(t),bc(t)
{
− â(t)dt + (1− b̂(t))[µV C

t + Aĉ(t)αη̂(t)β − l(t)]dt− ĉ(t)dt
}

. (83)

We can now use the arguments described in detail in Section 3 to show that the optimal controls

(a∗(t), b∗(t), c∗(t)) are as described in Theorem 1. Further, the optimal termination time is the

solution of the optimal stopping problem described in Section 5. The Markov control policy can

be shown to satisfy the conditions of the dynamic programming verification theorem (see Section

11 of Oksendal, 2003). Hence, it is, in fact, the optimal control policy among the space of all

square-integrable {Ft}-adapted controls. This completes the proof of Theorem 1.

Appendix C: Proofs of Remaining Results

The incremental change in termination payoff (1) depends on η only through the terms ηβ, ηγ .

There is no loss of generality if the unit of effort is redefined as z := ηβ, the production function

is taken as cαz and the disutility of effort is taken as zγ/β . As characterized in Theorem 1, the

equilibrium depends on the parameters β and γ only through their ratio γ/β. To simplify the

notation in the proofs to follow, we shall hereafter normalize β to 1.

For each parameter “Π” (e.g. σ2
0, s2, λ, ∆0, k) we let bt(π) denote the solution to (37) at

time t, define ct(π) := c(bt(π)), and let b(π) and c(π) denote the corresponding time paths when

the parameter Π’s value equals π. We shall write F ′
t(b, π) when we wish to make explicit the

functional dependence of the derivative of Ft on the parameter value π. For subsequent reference,
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the derivative of the VC’s Periodic Flow Function (36) is given by

F ′
t(b) = ∆t − p + Kc′(b) =

s2

s2 + tσ2
0

∆0 − λs + Kc′(b). (84)

The following Lemma will be used repeatedly in the proofs to follow.

Lemma 2

If F ′
t(b, π) is an increasing (decreasing) function of π, then bt(π) is an increasing (decreasing)

function of π.

Proof. Let π1 < π2. Suppose first that F ′
t(b, π) is an increasing function of π. By definition,

0 = F ′
t(bt(π2), π2) = F ′

t(bt(π1), π1) < F ′
t(bt(π1), π2),

which immediately implies bt(π1) < bt(π2) by the strict concavity of Ft. The proof in the decreasing

case is analogous.

Proof of Proposition 1. The optimal investment function is clearly positive on (0, 1]. The

marginal optimal investment is given by

c′(b) ∝
(1

k

) 1
(1−α)γ−1

br1(γ − b)r2(1− b) (85)

where r1 := 2−(1−α)γ
(1−α)γ−1 and r2 := αγ

(1−α)γ−1 and where the symbol ∝ means “equal up to a positive

multiplicative constant”. Under Assumption 2, the parameter r2 is positive and the parameter r1

is negative. (Keep in mind that β is now 1.) Since γ > 1 (Assumption 1), it follows that c′(·) > 0

on [0, 1), c′(1) = 0 and c′(·) is negative on [1, γ/β). This establishes that c(·) is increasing on [0, 1]

and achieves it maximum value at b = 1. The second derivative is given by

c′′(b) ∝ br1−1(γ − b)r2−1[r1(γ − b)(1− b)− r2b(1− b)− b(γ − b)].

The function c(·) is strictly concave on (0, 1] since c′′(·) is negative on (0, 1]. Part (a) has been

established. Given that ∆t decreases with t, it follows directly from Assumption 2 and part (a)

that the solution to (37) will belong to (0, 1). On this interval, the VC’s Periodic Flow Ft(·) is

strictly concave by part (a), and hence possesses a unique maximum. This establishes part (b).

Proof of Theorem 2. It follows directly from (84) and Lemma 2 that the EN’s pay performance

sensitivity decreases with time where here the parameter Π = t. This in turn implies the invest-

ment rates decrease with time by Proposition 1. Since both the pay performance sensitivities and

investment rates decrease with time, the effort levels in (23) decrease with time, too.

Proof of Theorem 3. We begin with parts (a)-(c). By Proposition (1) and the form for the

optimal effort level (23), the results for the optimal investment rate and EN’s effort paths will
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follow if we show that the path of the EN’s pay performance sensitivity is a pointwise decreasing

function of the respective parameters. This follows directly from (84) and Lemma 2 for either σ2
0

or λ. We turn our attention to s2. Fix s such that ∆0 < λs. We have

∂F ′
t(bt(s), s)

∂s
=

2s∆0tσ
2
0

(s2 + tσ2
0)2

− λ < λ
[ 2tσ2

0s
2

(s2 + tσ2
0)2

− 1
]

= −λ
[(s4 + (tσ2

0)
2

(s2 + tσ2
0)2

]
< 0.

Consequently, ∂F ′
t(bt(s), s)/∂s < 0, which establishes the result for the intrinsic risk by direct

application of Lemma 2. The proof of parts (a)-(c) is complete. Part (d) follows directly from

(84) and Lemma 2 and the same arguments given in the proof of parts (a)-(c). As for part (e), an

examination of (85) shows that if c′(b) > 0, then c′(b) decreases with k. Since c′(·) is positive on

[0, 1), the result now follows directly from (84) and Lemma 2 and previous arguments.

Proof of Proposition 2. Let

φ(t, µt, τ) := EV C
t

[ ∫ τ

t
(F ∗

v − `v + Θ−Rb)dv
]

(86)

denote the VC’s continuation value function at date t given her current project assessment µt and

a given (possibly sub-optimal) stopping time τ . In the above, F ∗
v satisfies (37). The VC’s optimal

continuation value function is

φ∗(t, µt) := sup
τ≥t

φ(t, µt, τ), (87)

By standard dynamic programming arguments, the optimal termination time τ∗ (if it exists) must

solve (87) for any t ∈ [0, T ] and µt ∈ (−∞,∞). Further, the VC continues the project at any date t

and project assessment µt if and only if φ∗(t, µt) > 0. The proof proceeds by showing that φ∗(t, ·) is

monotonic (non-decreasing) and lower semi-continuous. It then follows that at each date t ∈ [0, T ]

there exists a trigger µ∗t such that the VC continues the project if and only if µt > µ∗t .

We prove the monotonicity and lower semi-continuity of φ∗(t, ·) by considering the sequence of

discrete stopping time problems in which for each fixed positive integer N the VC is constrained to

terminate the project only at the discrete set of times {0, T
2N , . . . , (2N−1)T

2N , T}. We show that the

VC’s optimal value functions φ∗N (t, ·) in the discrete problems are continuous and monotonic. We

then use a convergence argument to show that φ∗(t, ·) is lower semi-continuous and monotonic.

Pick a positive integer N . We use backward induction to show continuity and monotonicity of

φ∗N (t, ·). To establish continuity we further show there exists positive constants κ1
t , κ2

t such that

φ∗N (t, µt) ≤ κ1
t + κ2

t max{µt, 0}. (88)

The assertions of continuity, monotonicity and (88) are trivial at date T since φ∗N (T, ·) ≡ 0. Suppose

that the assertion is true for t ∈ [t′ + 1
2N , . . . , T ]. We will establish that the assertion is true for
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t ∈ [t′, t′ + 1
2N ). Consider first any t ∈ (t′, t′ + 1

2N ]. By the dynamic programming principle,

φ∗N (t, µt) = Et

[ ∫ t′+ 1

2N

t
(F ∗

v − `v + Θ−Rb)dv + φ∗N (t′ +
1

2N
, µt′+ 1

2N
)
]

. (89)

Since F ∗
v is bounded and deterministic by (37), (7), (29) and (30) and Θ is normally distributed,

EV C
0

[ ∫ T

0
((F ∗

v )2 + (`v)2 + (Θ)2 + (Rb)2)dv
]

< ∞. (90)

We can therefore apply Fubini’s theorem to conclude that

φ∗N (t, µt) =
[ ∫ t′+ 1

2N

t
(F ∗

v − `v + µt −Rb)dv + Etφ
∗
N (t′ +

1
2N

, µt′+ 1

2N
)
]

. (91)

We first establish monotonicity of φ∗N (t, ·). The integral on the right-hand side of (91) obvi-

ously increases with µt; it remains to show the expectation on the right-hand side of (91) is also

monotonic in µt. A bit of algebra applied to (2) and (4) shows that µt′+ 1

2N
∼ N(µt, σ̂

2) is normally

distributed. Further, µt′+ 1

2N
may be expressed in the form ft(µt, Z) where Z ∼ N(0, 1) and ft(·, ·)

is an increasing, linear function of its arguments. The monotonicity of Etφ
∗
N (t′+ 1

2N , ·) now follows

from

Etφ
∗
N (t′ +

1
2N

, µt′+ 1

2N
) = Eφ∗N (t′ +

1
2N

, ft(µt, Z)), (92)

since the expectation on the right-hand side of (92) is taken with respect to the standard normal

density, which is independent of the problem parameters, and since both ft(·, z) and φ∗N (t′ + 1
2N , ·)

are monotonic in µt (the latter by the inductive assumption).

Next we show continuity of φ∗N (t, ·). Once again, this property obviously holds for the integral

on the right-hand side of (91); it remains to show the expectation on the right-hand side of (91)

is also continuous in µt. This result will follow from identity (92) if the limit and expectation

operators may be interchanged, since both ft(·, z) and φ∗N (t′ + 1
2N , ·) are continuous in µt (the

latter by the inductive assumption). By the inductive assumption (88) the function φ∗N (t′ + 1
2N , ·)

is bounded above by a positive function whose expectation

E
[
κ1

t′+ 1

2N
+ κ2

t′+ 1

2N
max{µt′+ 1

2N
, 0}

]
= κ1

t′+ 1

2N
+ κ2

t′+ 1

2N
{ σ̂t√

2π
e
−1/2(

µt
σ̂t

)2 + µtP (Z > −µt

σ̂t
)} (93)

is finite, and thus the interchange is justified by the dominated convergence theorem.

To complete the inductive argument we must show that (88) holds for t. The integral on the

right-hand side of (91) is bounded above by (t′ + 1
2N − t)(F ∗

0 + max(µt, 0))—recall the F ∗
t decrease

with t. Since (88) holds for t = t′+ 1
2N , the inequality (93) shows that the expectation on the right-

hand side of (91) is bounded above by (κ1
t′+ 1

2N

+ κ2
t′+ 1

2N

σ̂t√
2π

) + κ2
t′+ 1

2N

max(µt, 0). It is therefore

possible to define positive constants κ1
t , κ2

t such that (88) holds for t, as required.

46



Finally, we must establish the inductive step for t = t′. We have

φ∗N (t, µt) = max
[
0,

[ ∫ t′+ 1

2N

t′
(F ∗

v − `v + µt′ −Rb)dv + Et′φ
∗
N (t′ +

1
2N

, µt′+ 1

2N
)
]]

, (94)

where (94) differs from (91) because the VC can terminate at date t′. It should be clear that the

previous arguments still apply, and hence the inductive step is established.

Because {0, 1
2N , . . . , (2N−1)T

2N , T} ⊂ {0, 1
2N′ , . . . ,

(2N′−1)T

2N′ , T} for all N < N ′, it follows that

φ∗N (t, µt) ≤ φ∗N ′(t, µt). For each (t, µt) ∈ [0, T ]× (−∞,∞) we may therefore define

φ(t, µt) := lim
N→∞

φ∗N (t, µt) . (95)

We claim that φ = φ∗. Fix (t, µt) ∈ [0, T ] × (−∞,∞). Since φ∗(t, µt) ≥ φ∗N (t, µt) for all N ,

φ∗(t, µt) ≥ φ(t, µt). Suppose that φ∗(t, µt) > φ(t, µt). Choose any ε < (φ∗(t, µt) − φ(t, µt))/2.

There exists a stopping time τ ε such that φ(t, µt) < φ∗(t, µt)− ε < φ(t, µt, τ
ε) where φ(t, µt, τ

ε) is

defined in (86). Define the stopping time τ ε
N = i

2N 1{ i

2N <τε< i+1

2N }. There exists N sufficiently large

such that φ(t, µt, τ
ε
N ) > φ(t, µt, τ

ε) − ε. It follows that φ(t, µt) < φ(t, µt, τ
ε
N ). By definition of the

function φ∗N (t, µt), however, φ(t, µt, τ
ε
N ) ≤ φ∗N (t, µt) ≤ φ(t, µt), which is a contradiction. Hence,

φ(t, µt) = φ∗(t, µt). The monotonicity of φ∗(t, ·) easily follows from the monotonicity of φ∗N (t, ·)
and the fact that φ∗(t, µt) = limN→∞ φ∗N (t, µt). The lower semi-continuity of φ∗(t, ·) follows from

the fact that the supremum of continuous functions is lower semi-continuous.

Proof of Proposition 3. The function Ft(·) in (36) is an increasing function of ∆0, which implies

that F ∗
t is also a increasing function of ∆0. Consequently, the function φ∗t in (87) increases with

∆0, too. Since a change in ∆0 has no effect on the sample paths, and the path of µV C
t is continuous

almost surely, the project duration increases with ∆0. Since Ft(·) decreases function with λ or k,

analogous arguments show that the project duration also decreases with λ and k.

Proof of Proposition 4. Pick ε > 0 and define θ0 so that P (Θ > θ0) = ε. Now

P (τ > T ) = P{µt > µ∗t for all t ∈ [0, T ]}

≤ P{µT > µ∗T | Θ ≤ θ0}P (Θ ≤ θ0) + P (Θ > θ0)

≤ P{µT > µ∗T | Θ = θ0}+ ε. (96)

By Proposition 2 and the assumed property of the lt, the µ∗t eventually always lie above a positive

constant. Further, because, the conditional distribution of
∫ t
0 ξudu/t given Θ = θ0 is N(θ0, s

2/t),

P{µt ≥ µ∗t | Θ = θ0} = P{s2µ0 + σ2
0(

∫ t
0 ξudu)

s2 + tσ2
0

≥ µ∗t | Θ = θ0}

≤ P{
∫ t
0 ξudu

t
≥ µ∗t +

s2(µ∗t − µ0)
tσ2

0

| Θ = θ0} → 0 as t →∞. (97)

The result now follows from (96) and (97) since ε was chosen arbitrarily.
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Table 1: Baseline Parameter Values (standard errors in parentheses) and Baseline Outputs
Technology parameters Belief parameters Preference parameters

A α `1 `2 µV C
0 ∆0 s σ0 λ k γ

0.8435 0.1631 0.0820 1.9638 0.0660 0.2457 0.7280 0.4840 0.5469 0.0220 5.8107

(0.038) (0.024) (0.004) (0.093) (0.002) (0.009) (0.015) (0.019) (0.021) (0.001) (0.255)

Distribution of Project Duration

Agency Scenario Project Value VC Fund Stake Investment p∗0 p∗1 p∗2 p∗3 E[τ ]

Actual 4.23 3.24 0.48 0.506 0.383 0.106 0.004 1.61

Symmetric 3.47 2.91 0.38 0.565 0.341 0.090 0.003 1.53

No Agency 7.08 2.67 0.87 0.327 0.467 0.192 0.014 1.89

Table 2: Predicted and Observed Statistics

The first rows of the two tables record the observed statistics in Sahlman (1990, Figure 1) and Cochrane

(2005, Table 4). The second rows record the model’s predictions.

Distribution Distribution Value to

of Value of Investment Investment

1 2 3 4 5 1 2 3 4 5

0.020 0.105 0.130 0.255 0.490 0.345 0.300 0.198 0.089 0.068 4.28

0.045 0.117 0.176 0.209 0.454 0.319 0.292 0.180 0.110 0.099 4.32

Round-to-Round Round-to-Round

Returns Variances

1 2 3 4 1 2 3 4

0.26 0.20 0.15 0.09 0.90 0.83 0.77 0.84

0.25 0.20 0.16 0.10 0.88 0.85 0.81 0.83

Table 3: Contract Parameter Values (first four periods)
Agency Scenario b∗0 b∗1 b∗2 b∗3 c∗0 c∗1 c∗2 c∗3

Actual 0.415 0.309 0.271 0.251 0.115 0.110 0.108 0.107

Symmetric 0.188 0.188 0.188 0.188 0.102 0.102 0.102 0.102

No Agency 1.000 1.000 1.000 1.000 0.123 0.123 0.123 0.123
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Figure 1: Project Value, VC Fund Stake, Investment (Left Hand Axis) and 
Expected Project Duration (Right Hand Axis) with Capital Intensity
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Figure 2: Project Value, VC Fund Stake, Investment (Left Hand Axis) and 

Expected Project Duration (Right Hand Axis) with Transient Risk
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Figure 3: Project Value, VC Fund Stake, Investment (Left Hand Axis) and 
Expected Project Duration (Right Hand Axis) with Intrinsic Risk
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Figure 4: Project Value, VC Fund Stake, Investment (Left Hand Axis) and 

Expected Project Duration (Right Hand Axis) with Optimism
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Figure 5: Implied Discount Rate with Capital Intensity, Transient Risk,
 Intrinsic Risk and Optimism
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Figure 6: Optimism Ratio with Capital Intensity, Transient Risk,
 Intrinsic Risk and Optimism
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Figure 7: Internal Rate of Return with Capital Intensity, Transient Risk, 
Intrinsic Risk and Optimism
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